158 DIGITAL COMPUTER PROGRAMMING

X

)
zz

Thus, tapes 1 and 2 will be read 125 times to calculate 1000 records which
will be written on tape 3.

2. Suppose that in paragraph 2 of Section 12.3 there are just eight results
(one block) per case, and a variable number of cases with a tape mark at
the end. The eight numbers are

a;

Cq

Yi
where the subseript indicates the case numbers. Write the program to bring
in this information from tape 1 and calculate

n

n 12
Z (B: + Si + T, Z il - Z @i,
i=1 1 ni=1

1=

i b 13 i
e i ey Ci
niz=:1 Ni=1

where 7 is the number of cases, and must be calculated.

3. Write a self-loading tape program which then loads tape blocks which
are exactly the same as the card format of Section 11.5. This wpuld be
approximately the situation if auxiliary tape equipment were available.

4. Write the program of subroutine 1 of Section 12.2.
5. Write the program of subroutine 3 of Section 12.2.
6. Write the program of subroutine 4 of Section 12.2.

13 PROGRAM CHECKOUT

13.0 Introduction

Once a program has been written, it must be verified or checked
out to determine if it actually does the job it is designed for. The
steps of analysis and programming can lead to many logical errors,
i.e., errors in conception or in flow through the problem. The testing
of a loop may be set up improperly or the alternatives to be taken in
certain situations may not have been thoroughly thought out. Pos-
sibly a mathematical procedure will not work in a certain case.

A large source of errors is the actual coding. This part of the
task involves such a great mass of detail that simple mistakes can
easily be made. An operation code may be copied incorrectly or
remembered wrongly. Errors can be made which are simply blunders:
the index control may be omitted, or a two written where there
should be a three, or a tape address indicated which does not exist.
There are so many possibilities of making mistakes that a perfect
program is practically never written.

All these errors must be corrected before right answers can be
obtained. There are several general approaches which may be taken,
and several ways of making the machine help track down the errors.
We shall discuss these in some detail, since checkout is a rather
sizable part of the total cost of preparing a problem for computer
solution.

13.1 Approaches to Checkout

The first attack on the checkout problem may be made before
coding is begun. In order to fully ascertain the accuracy of the
answers, it is necessary to have a hand-calculated check case with
which to compare the answers which will later be calculated by the
machine. This means that stored program machines are never used
for a true one-shot problem. There must always be an element of
iteration to make it pay. The hand calculation may be done at any

159

160 DIGITAL COMPUTER PROGRAMMING

point during programming. Frequently, however, computers are
operated by computing experts who prepare the problems as a service
for engineers or scientists. In these cases it is highly desirable that
the “customer” prepare the check case, largely because logical errors
and misunderstandings between the programmer and customer may
be pointed up by such a procedure. If the customer is to prepare the
test solution, it is best for him to start well in advance of actual
checkout, since for any sizable problem it will take several days or
weeks to hand-calculate the test.

In view of the time required, it is reasonable to ask why we
bother with a check case. Is it not possible to check the computer’s
answers some easier way?

There are three answers to this. The first is the point mentioned
above, which revolves around the serious communication problem in
a service-bureau or “closed shop” type of computer operation. It
is surprising how frequently misunderstandings can arise about
details. These all have to be ironed out sooner or later, and a detailed
check case is a good way to discover them fairly early.

The second reason revolves around a disastrous type of error
which can be very difficult to catch, namely, the small error that
results in a fairly reasonable answer. Supposc that a constant is
entered incorrectly as 1.01 instead of 1.001. This is only about a
1% error, which from a standpoint of reasonableness of final answers
may not be detected by anyone. Often the problem originator
knows within 5% or 10% what the answers ought to be, from general
knowledge of the physical situation—but not within 1%. Yet the
data and numerical methods may be good to 0.1% and be used with
this accuracy assumption. This sort of error is next to impossible to
catch without a detailed, accurate test case. It is worth pointing out
also that errors in input may result in much larger or much smaller
errors in the final answers. If the number above appeared in a
formula such as

et 14,576
C; — 1.001

the error in the final answer would be quite large if C; were close

to 1.001, but undetectable (and probably harmless) if C; were 10 or so.
This emphasizes that as far as possible the test case should pick

the situations most likely to point up errors. If possible C; should

be chosen close to 1. A particularly important consideration is not to

pick values which could cover up other errors. TFor instance, take

PROGRAM CHECKOUT 161
the formula
y = (a — 1)et=t2/2 be—=

If a value of 1.0 is used for a, the final answer is of course inde-
pendent of the first exponential. The answer could come out correctly
even with major errors in the exponential term. Similarly, a b value
of 0 should not be used. Again, if z is chosen larger than 2 or so,
the second exponential term will be nearly 0 and will have little
effect on the result. A major error in the value of b might then go
undetected.

The third reason for a detailed check case revolves around the
importance of many computer applications. Some large problems
may use literally hundreds of hours of computer time, which in itself
is expensive. More important, the results may be the design of
equipment or tests involving in some cases millions of dollars. This
perhaps emphasizes that it is very worthwhile to expend considerable
effort to be positive the answers are right.

The next general approach will become clearer when we discuss
various machine methods: writing the code so it will be easy to
check. This implies keeping intermediate storage in tidy blocks, if,
as usual, memory print is to be the primary checkout tool. It also
sometimes implies writing a less fancy code which will be easier
to follow. This is a bit hard to illustrate; we may simply say that
occasionally it is possible to use tricks in coding which save a few
steps (and give a glow of inner satisfaction) but cause grief when
the problem is put on the machine, particularly if anyone else has
to assist in the checkout.

The third general approach is to make a detailed check of the
code as written, before trying it on the machine. This is aimed at
all types of errors: conceptual, logical, and stupid. Perhaps its
primary mission, however, is to catch the stupid mistakes like wrong
operation codes and addresses.

There are various ways of going about a detailed code check. The
obvious way is for the person who wrote the code to go back over it,
preferably after a few days’ delay between writing and checking.
The coder may simply read the instructions carefully, checking
addresses, constants, loop testing, making sure operations are correct,
ascertaining that the tape was rewound before reading after writing,
ete. Some coders like to draw a second flow chart, working backward
from the code, and compare it with the original flow chart.

A well-veccommended technique is to have someone clse do the
cheeking, with or without drawing a new flow chart, The reason

162 DIGITAL COMPUTER PROGRAMMING

for this is the well-known fact that we tend to become somewhat
entranced with our own mistakes. Reading stale code is uninteresting
at .be§t, and errors do not always exactly stand out from the page.
This is true no matter who reads the code, but it seems to be a lot
harder to check one’s own work. The code is familiar, and there
seems to be a strong tendency to skim over the instructions without
really being critical of each little mark on the page. This corresponds
exactly to the difficulty of proofreading one’s own writing. A second
person does not know what to expect, and is not partially blinded
!oy what .he knows ought to be written in a given instruction. He
1s more 1n a position of trying to read the code and understand
from it what was done; this requires a much more careful reading
than for the original writer to force himself to look it over, trying
to find blunders. : i

It sometimes works out very satisfactorily for two people to work
on a problem. If one is much more experienced, he will do most of
.the. original work with the second doing mostly checking (which,
incidentally, is a fine training method for the second person). If the
two are equally qualified, both can write code and check each other’s
work.

This may seem like a large effort for the gain. As may become
more obvious from the discussion in the next section, finding errors
once a problem is on the machine is very expensive. It has been
estimated that on a large machine of the IBM 704 or Univac Scientific
class, each coding error costs between twenty and fifty dollars to
ﬁn.d, including machine time and programmer time. The plan of
using another person to check over codes before attempting the
problem on the computer answers this high cost in two ways. First
the prechecking cost required to find an error, on the average, is not‘j
as great as the total cost of finding it later. This is because in most
cases the computer costs much more per minute than a programmer
does. The second economic consideration is that the checker is fre-
quently not as highly paid as the original writer, nor as highly skilled.

Tests of accuracy can often be programmed, to be carried out
along .With the solution. One technique is to compute each important
quantity twice, using different memory locations and different
sequences of instructions, and compare the answers. If done con-
sistently, this of course requires twice the computer time to get a
solution. It is usually not done on machines which have extensive
self-checking, such as Univae, or on machines which are felt for other
reasons to be sufliciently reliable. Neither is it often done if there are
other ways of accomplishing the same result with less effort. Ifor

PROGRAM CHECKOUT 163

instance, after solving a system of linear equations it is not very
time-consuming to substitute the answers back into the original
equations to test whether they actually satisfy the system. It would
be more precise to say, satisfy the system within satisfactory limits.
Because of round-off and other errors inherent in digital solutions,
the unknowns will almost never satisfy the system exactly, and some
allowance must be made for this in programming the back substitu-
tion. The same comment applies to other examples of checking
which are not so lengthy as computing the answers twice. After
computing a long chain of tabulated values of some function, it may
be possible to apply an asymptotic formula to check the last value.
If the sine and cosine of an angle are computed in the course of a
problem, the identity sin®x 4 cos?z =1 can be programmed. The
list could be extended.

The last general approach to the checkout problem which we will
discuss is that of testing all possibilities in a program. Some applica-
tions involve many branches and forks all the way through; any
problem has some alternatives built into it. An engineering cal-
culation may specify that a certain parameter has a limit of one; if
it is calculated as greater, one should be substituted. An accuracy
check might be built into a problem to find the sum of the sine
squared and cosine squared; if the sum is more than 10— 7 away
from one, the program should stop. Examples could be multiplied.
The point is, of course, that a program is not necessarily free of all
errors simply because it gets correct answers to one set of inpul.
As far as feasible, all possibilities in the program must be checked.
Sometimes the nature of the problem is such that this is almosl
impossible, particularly if contingencies can occur in pairs or triples.

This again points up a kind of error that may go undeteeted for
months. A parameter is supposed to have a programmed limit of one,
but the code is wrong so that nothing happens if it is actually arealer
than one. For the first 6 months the program is run, this situation
never arises; then a particular set of input results in the parameter
going to 1.04. It may take days to track the trouble down.

Checkout is perhaps a fourth or a third of the total cost of problem
preparation prior to first production running. It is costly and time-
consuming enough to be worthy of more carcful planning than it
often receives.

13.2 Machine Checkout Methods

There are geveral ways to make the computer itself assist in the
checkout procedures, Two of these are simple adaptations of machine

164 DIGITAL COMPUTER PROGRAMMING

features; the others make use of a special-purpose program which
must be in memory along with the program being checked.

The most elementary machine checkout technique is the use of
the single step key. It will perhaps be remembered that with the
automatic-manual switch set to manual, pressing the single step key
causes one instruction to be executed. This will be in normal sequence
or a jump, depending on the instruction in the current instruction
register. It is possible also to make a manual jump to any location
via the enter instruction key. Single-stepping consists of getting the
first instruction of interest into the current instruction register, then
repeatedly pressing the single step key and watching what happens.
In many cases it is necessary to copy down certain information
from the registers, such as the actual addresses and contents of index
registers. In some cases the arithmetic may be verified against a
hand-calculated case.

This is unfortunately an extremely expensive method and is seldom
used except on very small sections of programs in order to find errors
which resist more conventional attacks. Besides the high cost of
machine time, the method has the disadvantage that there is no
permanent record of what is happening. Frequently in such cases,
the programmer takes his scratch paper back to his desk to analyze,
only to discover that there was one critical piece of information which
was not copied down.

This is obviated by a tracing program, the next level of sophistica-
tion in checkout. As the name implies, this is a program which must
be in memory along with the program being checked. Its purpose
is to record on tape or printer or punch all the information which a
person using single step might record. A fairly typical tracing
program for TYDAC might punch out on a card the following
information:

Location of instruction.

Operation-address-index control, i.e., current instruction register.

Contents of accumulator.

Contents of MQ.

Contents of memory location specified by address part of
instruction.

Contents of index registers.

All of the arithmetic information is punched or printed as it appears
after the execution of the instruction specified by the location counter
and the current instruction register. All of the information can be
obtained in much less time than it takes to punch it, so that tracing
can proceed at full punching or printing speed. Ilowever, this is still

PROGRAM CHECKOUT 165

vastly slower than the high-speed operation of the arithmetic section.
The IBM 650, for instance, can punch only 100 cards per minute,
whereas arithmetic can be carried out at an average of perhaps 25,000
operations per minute. Another way of illustrating this is to point
out that the single loop used as the first example in Chapter 6, which
simply added fifty numbers, would take almost 10 minutes to trace
at 100 cards per minute.

We need not be concerned as yet with the details of how the tracing
program operates; it is an interpretive method, as discussed in
Chapter 15. It is controlled by jump instructions just as the program
is; in other words, it gives a record or trace of what went on at each
point through the program. It is subject to the rather obvious limita-
tion that no sequences of instructions may be traced which depend on
timing of mechanical parts. For instance, a Select instruction must
be followed within a certain time limit by a read or write, so there
would be no time to trace these.

Since tracing is so slow, it is often desirable to make it a selective
process, where only some of the instructions are traced. It is not
too difficult to design the trace program so that it automatically skips
over input-output instructions where there would be timing problems.
The program can be designed to accept information as to where to
start tracing, such as the location of the first instruction to be traced.
The information can be more complete, consisting of a table of
regions of instructions to be traced. In some machines, instructions
may have either a plus or a minus sign. This choice can often be
used to control tracing; instructions might be written with plus signs
if they are to be traced, minus if not. This demands foresight in
the code writing, since what will be selectively traced must be
established in advance. A usual procedure would be to plan to trace
the instructions which compute significant intermediate answers. It
is possible to change the signs of the affected instructions during
checkout, but this is not too convenient.

The procedure allowed by some trace programs, of specifying
regions to be traced, gives more flexibility. The regions to be traced
are usually signaled by punching initial and final addresses on control
cards. These can quite simply be inserted in the deck, or removed,
as the checkout progresses and different sections of the program
become of primary interest.

Tracing is not only expensive but it very often does not give all
the information needed, A trace may show that a certain loop
containg wrong addresses, The programmer sitting at his desk with
no more information than the trace may wish to know what happened

166 DIGITAL COMPUTER PROGRAMMING

in an early section of the program which set up the initialization.
Since it is almost never possible to trace an entire program—which
might literally require hours of computer time—he probably has no
printed record at all of what happened in that initialization. With
the clue of where the error is, he may be able to go back to the
instructions in question and figure out the trouble without the printed
record, but often he cannot. What is really needed is a listing of
what the instructions in question looked like after the trouble arose.

A listing of a consecutive section of memory, either numbers or
instructions, is called a memory print, or often, a memory dump.
It has the characteristic of some tracing programs of being highly
selective: as little or as much of memory may be dumped as may
be pertinent. At any one point it gives a great deal more informa-
tion than tracing does. A significant point here is that the memory
dump does give information at one point. In this sense it is funda-
mentally different from tracing. We may say that tracing gives a
dynamic record of what happened at each instruction as the program
was executed. It is a sort of vertical record: a little information at
many points. The dump is a sort of horizontal record: it gives a
complete cross section consisting of much information at a few points.
This often requires a partial memory dump at several points through
the program.

The break point switch is frequently a help in such situations. To
review, this is a rotary switch on the console which may be set to one
of ten positions, 0 through 9. A test instruction is used to “interro-
gate” this switch. If the switch is set to 3, say, and the instruction

Break jump a, 3

is given, the machine will stop. When the start button is pressed,
the next instruction is taken from a. If the switch is set to any other
position, the next instruction in normal sequence is taken, and there
is no stop.

This instruction may be used to control a memory dump by
inserting Break jump instructions at points in the program where
information is needed. The switch can be set to different positions
as checkout proceeds.

To understand this more fully, we must discuss how memory dump
programs operate. One fairly common technique requires the initial
and final addresses of a region to be entered manually into the MQ.
Under this plan, when a Break jump stops the machine, the operator
specifies the region (s) to be printed or punched and makes a manual
jump to the start of the dump program. The dump program stops

v

PROGRAM CHECKOUT 167

after completion, at which point the operator makes a manual jump
back to the instruction following the Break jump. Depending on the
circumstances, he may change the setting of the break point switch
before starting the program again, to prepare to get another dump
when and if the program arrives at another critical juncture. In this
case the important feature of the Break jump is not the jump,
but the stop.

Another way of using the instruction requires more foresight as to
what information may be needed during checkout, but saves con-
siderable console fiddling. It is possible to print or punch sections
of memory by using a program called from memory. The plan is
to have in memory several calling sequences to dump sections of
storage; the addresses in the Break jump are the addresses of the
appropriate calling sequence. At the end of each group of calling
sequences is an Unconditional jump back to the instruction following
the appropriate Break jump. All the operator has to do now is
push the start button when the stops occur, and possibly change
the setting of the break point switeh before doing so.

These break points, at which memory is dumped or other informa-
tion is obtained, are simply critical spots in the program, at which a
little information may tell a great deal about the process.

A memory dump may be used in two ways. We have discussed how
to use it to get information during the execution of a program. It is
also employed to get information after completion of a program, or
when it unexpectedly “dies” during a checkout run. In either situa-
tion it is desirable to have a complete listing of all numbers and in-
structions to use as reference in tracking down troubles. It is also
very desirable to have the contents of all registers at the time of the
breakdown so that the immediate fault can be pinpointed.

As a final indication of the time comparison between tracing and
dumping, we may observe that the entire 2000 words of TYDAC could
be punched in the format discussed in Chapter 11 in 3 minutes at 100
cards per minute. In the same time, only 300 instructions could be
traced, which in a program with extensive looping would be a very
small part of the total number of instructions to be executed. And
even in the same time, the memory dump would give much more
pertinent information. We may safely say that memory dumping is
a much more sophisticated approach to the checkout problem. A
common tendeney is for new programmers to learn tracing first, and
to misuse it very badly. The experienced programmer uses tracing
oceasionally, for small parts of a program, but only after other meth-
ods have fatled Co loeate the trouble.

168 DIGITAL COMPUTER PROGRAMMING

Special-purpose diagnostic programs can be designed which com-
bine the best features of all these techniques, and at the same time
allow quite flexible control. Some of these depend on special features
of machines;* one will be described which could be used on any
machine, and the TYDAC in particular.

A reasonable name for the program might be “dynamic diag-
nostic.” It has the following characteristies:

1. Small regions to be traced may be specified by an initial and
final address entered on a card.

2. At any point in the program which is not limited by timing re-
quirements, a memory dump of several sections of memory may be
called for.

3. At any memory dump a simple code, punched on the card which
calls for the dump, will call for punching out the contents of all
registers.

4. Ttems 2 and 3 may be done only a limited number of times
through a loop, or not until a specified number of times through, ac-
cording to a code punched in the same card.

5. Provision may be made to get certain information if the program
breaks down—which we might call “post-mortem” information. By
entering a “post-mortem control” card, we may ask for the contents of
the arithmetic and control registers, a dump of specified sections of
memory, and a count of the number of times certain instructions were
executed.

All of the above except the last are carried out automatically dur-
ing execution of the program. There are no stops as when the branch
switch is used, but the execution of the program is slowed down by
any tracing or dumping and by internal red tape operations associated
with counting the number of executions, etc. The fact that much
of the operation of the diagnostic work is carried on simultaneously
with the operation of the program being checked is the basis of the
word “dynamie.”

The post-mortem information is wanted only after the program
breaks down, and since this cannot be predicted, a manual jump is
required to start the post-mortem punching. The dynamic diagnostic
program itself would occupy several hundred storage locations. This
space could not be used unless there was information to go into the
program which would not be needed during checkout and which could
be entered later. This would not usually happen, so we must admit
that we have given up a significant fraction of memory to the check-
out problem.

* Such as the trap jump on the IBM 704.

PROGRAM CHECKOUT 169

To be more specific about how such a program would work, the
details of input and output will be discussed.

The deck for dynamic diagnostic checkout would consist of:

1. The card loading program discussed in Chapter 11.

2. The deck being checked out, including all data.

3. The diagnostic program, which would load on normal cards.
The last card would be a transition to the dynamic diagnostic
program.

4. The program transition card.

5. The various control cards for dynamic traces or dumps, plus
any post-mortem controls.

All these would load at full speed before any diagnostic procedure
began. The program transition card and the control cards would be
loaded by the diagnostic program; the program transition card would
not immediately be executed, but the information on it would be
stored for use after the controls were loaded. It is important to note
that these control cards are taken to be control cards only because of
their position in the deck, and because they are loaded by a special
input program in the dynamic diagnostic.

The output of the program is fairly straightforward. In TYDAC
it would be a deck of cards which would be listed on a tabulator.
Any sections of tracing would be obvious enough. Dumps would be
in standard memory output form with initial addresses and seven
numbers per line. Contents of registers would be punched out in
much the same format as a line of tracing. Counts of the number of
times an instruction was executed would punch with the instruction
location in the address part and the count in the index control part.

13.3 Conclusion

There are many programs available for actual machines to assist
in checkout. Properly used, they can save much personnel time and
practically eliminate aimless console fiddling. These programs will
become more and more sophisticated as experience is gained in
their use.

