
1

2

3

4

5

What is User Acceptance Testing? With all of these possible interpretations, can it
really be different from “testing”? To paraphrase Gertrude Stein, is there any there
there?

6

This last point is the most important subject that I’d like to address today. Far more
than that, I think it’s the most important subject for our profession as technical
people in general, and as testers in particular. I believe that we must, as competent
and responsible technical workers, as knowledge workers, continuously question all
of our processes in a critical way. It’s only by doing that, I argue, that we can be
more sure that we are performing valuable and honourable services for our
customers. It’s the difference between working to a purpose and going through the
motions.

7

8

Understanding user acceptance testing is really an exercise in context-driven
thinking. The definition of User Acceptance Testing can’t be applied in a meaningful
way without reference to a specific context.

9

I’d like to highlight the notions that words (like user acceptance testing) are fundamentally
ambiguous; that we have different points of view that are rooted in our own cultures and
circumstances and experiences; that it is vital to try to gain understanding of the ways in
which other people, even though they sound alike, might be saying and thinking profoundly
different things. Rather than saying “that’s not User Acceptance Testing”, I’d like to
encourage you to say, “that’s not User Acceptance Testing the way we do it— but how
might it be rational, appropriate, or even crucial, to do it some other way in different
circumstances?” By doing this kind of analysis, we adapt, usefully, to the changing
contexts in which we work; we defend ourselves from being fooled; we help to prevent
certain kinds of disasters, both for our organizations and for ourselves. These disasters
include everything from loss of life due to inadequate or inappropriate testing, or merely
being thought a fool for using approaches that aren’t appropriate to the context. The
alternative—understanding the importance of recognizing and applying context-driven
thinking—is to have credibility, capability and confidence to apply skills and tools that will
help us solve real problems for our managers and our customers.

In order to make sense of our context, it’s important early on to visit item 3 on the Context-
Driven Testing list: people, working together, are the most important part of any project’s
context. From Josh Kerievsky, I learned the term “project community”—although I believe it
was Alastair Cockburn who coined it. In each project that I’ve worked on, I’ve found it very
useful to build a list of parties who might have an interest in the testing of a product, or who
might be affected by it. I try to do this early in the project, and to revisit it frequently.

10

11

Here’s a useful way to think of this, by the way: in your head, walk through your
company’s offices and buildings. Think of everyone who works in each one of those
rooms—have you identified a different role?

12

I’ve listed fourteen project roles on a previous page. When we list user roles in my
seminars and courses, we typically get to thirty with no effort at all. Thirty roles in
the project community times four roles within the acceptance test gives us a huge
number of potential interaction models for a UAT project. There may be lots of
project roles that I’ve left out, but the mere act of thinking about this should remind
us that there are plenty of roles in any project community, and these roles have
different (and sometimes antagonistic) motivations. My statistics is a little rusty, but
for just the roles I’ve listed, I believe the general formula would be 14 times 13 times
12 times 11, which is 24,000 some-odd combinations, if we believed that every
combination were valid. They won’t be of course, but would “over 50” suffice to
make the point? Which is this: Just in terms of who’s doing what, there are too
many possible models of user acceptance testing to hold in your mind without
asking some important context-driven questions for each project that you’re on.

13

14

15

I would add assessing of compatibility, assessing readiness for deployment,
regression testing, or ensuring that that which used to work still works—we can all
add to the list, and that’s great.

16

A context-driven approach encourages us to ask questions about what people mean when
they say things—so what could people mean by “acceptability” or “acceptance”? Just as
with “testing” itself, they could mean a bunch of things.

In TCS, Cem Kaner, Hung Nguyen, and Jack Falk talk about acceptance testing as
something that the test team does as it accepts a build from the developers. The point of
this kind of testing is to make sure that the product is acceptable to the testing team, with
the goal of making sure that the product is stable enough to be tested. It’s a short test of
mainstream functions with mainstream data. Note that the expression user acceptance
testing doesn’t appear in TCS, which is the best-selling book on software testing in history.

Lessons Learned in Software Testing, on which Cem was the senior author with James
Bach and Brett Pettichord, neither the term acceptance test nor “user acceptance test”
appears at all. In Black Box Software Testing, by Boris Beizer, neither the term acceptance
test nor “user acceptance test” appears at all.

Perry and Rice, in their book “Surviving the Top Ten Challenge of Software Testing,” say
that “Users should be most concerned with validating that the system will support the needs
of the organization. The question to be answered by user acceptance testing is ‘will the
system meet the business or operational needs in the real world?’”. But what kind of
testing isn’t fundamentally about that? Thus, in what way is there anything special about
user acceptance testing? They add that user acceptance testing includes “Identifying all
the business processes to be tested; decomposing these processes to the lowest level of
complexity, and testing real-life test cases (people or things (?)) through those processes.”
Finally, they wimp out and say, “the nuts and bolts of user acceptance test is (sic) beyond
the scope of this book.”

17

18

19

20

In some cases, UAT is not testing at all, but a ceremory. In front of a customer (who
may or may not be a bigwig), someone operates the software, without investigation,
even without confirmation. Tests have been run before; this thing called a user
acceptance test is a feel-good exercise. No one is obliged to be critical in such a
circumstance; in fact, they’re required to take the opposite position, lest they be
tarred with the brush of not being a team player. This brings us to an observation
about expertise that might be surprising: for this kind of dog and pony show, the
expert tester shows his expertise by never finding a bug.

For example, when the Queen inspects the troops, does anyone expect her to
perform an actual inspection? Does she behave like a drill sergeant, check for
errant facial hairs? Would we not consider it strange if she asked a soldier to
disassemble his gun so that she could look down the barrel of it? Of course we
would—and that’s because of the context of the situation. In this circumstance, the
inspection is ceremonial. It’s not a fact-finding mission; it’s a stroll. We might call
that kind of inspection a formality, or pro forma, or ceremonial, or perfunctory, or
ritual; the point is that it’s not an inspection at all.

21

Another great example, which James Bach suggested to me—this actually
happened to me. I bought a car a few years ago—it’s a 20-year-old BMW. On that
test drive for a new car, the salesman doesn't want problems to be found; that
would be a disaster. Not even the customer wants to find a problem at that stage.
It was a ceremonial part of an otherwise arduous process, and everyone just wants
to be happy. In this case, both the customer and the salesperson are actively
uninterested in finding problems; it’s a feel-good occasion.

22

We often see in testing literature the idea of a user acceptance test as a formality, a
ceremony or demonstration, performed after all of the regular testing has been
done. I’m not saying that this is a bad thing, by the way—just that if there’s any
disconnect between expectations and execution, there will be trouble—especially if
the tester, by some catastrophe, actually does some investigative testing and finds
a bug.

23

Some versions of user acceptance testing are a little less perfunctory and pro
forma. There’s a form of user acceptance testing is a very late stage in the process,
a hoop through which the product must jump in order to pass. Typically it involves
some kind of demonstration of basic functionality that an actual user might perform.
Sometimes a real user runs the program; more often it’s a representative of a real
user from the purchasing organization. In other cases, the seller’s people—a
salesperson, a product manager, a development manager, or a tester—walk
through some user stories. This kind of testing is essentially confirmatory in nature;
it’s more than a demo, but less than a really thorough look at the product.

This form of user acceptance testing confuses me, quite frankly, especially as it gets
closer to the confirmatory end of the scale. I hear about it a lot; it’s one of the few
kinds of user acceptance testing that actually shows up in the literature. Whenever
it does, I observe mixed messages about it. One of the assumptions of this variety
seems to be that the users are seeing the application for the first time, or for the first
time since they saw the prototype. At this stage, we’re asking someone who is
unlikely to have testing skills to find bugs that they’re unlikely to find, at the very
time when we’re least likely to fix them.

24

The object of this game is still that Party B is supposed to accept that which is being
offered by Party A. In this kind of user acceptance testing, there may be an
opportunity for B to raise concerns or to object in some other way. If the problem is
one that requires no thinking, no serious development work, and no real testing
effort to fix, it might get fixed. That’s because every change is a risk; when we
change the software late in the game, we risk throwing away a lot that we know
about the product’s quality. A fundamental restructuring of the GUI or the back-end
logic is out of the question, no matter how clunky it may be, so long as it barely fits
the user’s requirements. Easy changes, typos and such, are potentially palatable.
The only other kind of problem that will be addressed at this stage is the opposite
extreme—the one that’s so overwhelmingly bad that the product couldn’t possibly
ship. Needless to say, this is a bad time to find this kind of problem.

It’s almost worse, though, to find the middle ground bugs—the mundane, workaday
kinds of problems that one would hope to be found earlier, that will irritate
customers and that really do need to be fixed. These problems will tend to cause
contention and agonized debate of a kind that neither of the other two extremes
would cause, and that costs time.

25

There are a couple of preventative strategies for this catastrophe. One is to involve
the user continuously in the development effort and the project community. This is
something that promoters of the Agile movement suggest. I think this is a really
good thing. I’ve been doing some consulting lately in a shop that calls itself “agile”.
I don’t think the Agilistas have solved the problem completely, but they have been
taking some steps in some good directions, and involving the user closely is a noble
goal. In our shop, although our business analyst not sitting in the Development
bearpit, as eXtreme Programming recommends, she’s close at hand, on the same
floor. And we try to make sure that she’s at the daily standup meetings. The
bridging of understanding and the mutual adjustment of expectations between the
developers and the business is much easier, and can happen much earlier in this
way of working, and that’s good.

Another antidote to finding bad bugs late in the game—although rather more difficult
to pull off successfully or quickly—is to improve your testing generally. User stories
are nice, but they form a pretty weak basis for testing. That’s because, in my
experience, they tend to be simple, atomic tasks; they tend to exercise happy
workflows and downplay error conditions and exception handling; they tend to pay a
lot of attention to capability, and not to the other quality criteria—reliability, usability,
scalability, performance, installability, compatibility, supportability, testability,
maintainability, portability, and localizability. Teach testers more about critical
thinking and about systems thinking, about science and the scientific method.
Show them bugs, talk about how those bugs were found, and the techniques that
found them. Emphasize the critical thinking part: recognize the kinds of bugs that
those techniques couldn’t have found; and recognize the techniques that wouldn’t
find those bugs but that would find other bugs. Encourage them to consider those
other “ilities” beyond capability.

26

User acceptance testing at this stage might pay some attention to usability; here’s
something I’d like to say about that. If you’re in the position where you’re accepting
software, I think it’s important to watch out here for the distinction between ease of
learning and ease of use. In my own past, I look to the difference between DOS-
with-DESQview and Windows. DESQview was a multitasking environment for
regular DOS programs. Its user interface was keyboard-oriented and very terse, or
subtle, if you like, but it was fast and clean and simple, and it stayed out of the way.
Windows gave an impression of user-friendliness that was hard to resist for a lot of
people; it was prettier, mouse-centric, obvious in certain ways. I found then—as I
still do now—that there are lots of tasks that still take longer in Windows. Windows
has also become more and more cluttered as it has taken on more and more
features and functions. There’s no denying its success, but compared to
DESQview, I would say that Windows is easy to learn, but ultimately harder to use.
Some programs are very solicitous and hold the user’s hand, but like an obsessive
parent, that can slow down and annoy the mature user. So: if your model for
usability testing involves a short test cycle, consider that you’re seeing the program
for much less time than you (or the customers of your testing) will be using it. You
won’t necessarily to have time to develop expertise with the program if it’s a
challenge to learn but easy to use, nor will you always be able to tell if the program
is both hard to learn and hard to use.

Usability testing late in the development cycle is usually a mug’s game. Big
changes won’t happen; usability concerns might get addressed in a later version of
the product. If you’re going to do UI testing, do it early.

27

Confirmation should be investigative; pernicious if it slips into ceremonial behaviour.

In general, with confirmation, one bit of information is required to pass the test; in
exploration, many bits of information are required.

28

Validation seems to be used much more often when there is some kind of
contractual model, where the product must pass a user acceptance test as a
condition of sale. At this point, assuming a typical product, it’s late, people are tired,
lots of bugs have been found and fixed, and we just want to get it over with. There's
lots of pressure to get it done, and there's lots of disincentive to find problems. At
this point, the skilful tester faces a dilemma: should he look actively for problems
(thereby annoying the client and his own organization should he find one), or should
he be a team player?

29

My final take about the validation sense of UAT: when people describe it, they tend
to talk about validating the requirements. There are two issues here. First, can you
describe all of the requirements for your product? Can you? Once you’ve done
that, can you test for them? Are the requirements all clear, complete, up to date?
The context-driven school loves talking about requirements, and in particular,
pointing out that there’s a vast difference between requirements and requirements
documents.

Second, shouldn’t the requirements be validated as the software is being built? Any
software development project that hasn’t attempted to validate requirements up until
a test cycle, late in the game, called “user acceptance testing” is likely to be in
serious trouble, so I can’t imagine that’s what they mean. Here I agree with the
Agilistas again—that it’s helpful to validate requirements continuously throughout
the project, and to adapt them when new information comes in and the context
changes. Skilled testers can be a boon to the project when they supply new, useful
information.

30

There are some circumstances in which relations between the development
organization and the customer are such that the customer actively wants to reject
the software. There are all kinds of reasons for this; the customer might be trying to
find someone to blame, and they want to show the vendor's malfeasance or
incompetence to protect themselves from their own games of schedule chicken.
This is testing as scapegoating; rather than a User Acceptance Test, it’s more of a
User Rejection Test. In this case, as in the last one, the tester is actively trying to
find problems, so she’ll challenge the software harshly to try to make it fail. This
isn’t a terribly healthy emotional environment, but context-driven thinking demands
that we consider it.

31

There is yet another sense of the idea of UAT: that the most direct and frequent
user of a piece of code is not a person, but other software. In his book “How to
Break Software”—one of my favourites—James Whittaker talks about a four-part
user model, in which humans are only one part. The operating system, the file
system, and application programming interfaces, or APIs, are potential users of the
software too. Does your model of “the user” include that notion? It could be very
important; humans can tolerate a lot of imprecision and ambiguity that software
doesn’t handle well.

32

There's another model, not a contract-driven model, in which UAT is important. I
mentioned DESQview earlier; I worked for Quarterdeck, the company that produced
DESQview and other mass-market products such as QEMM and CleanSweep.
Those of you with large amounts of gray in the beard will remember it. We didn’t
talk about user acceptance testing very much in the world of mass-market
commercial software. Our issue was that there was no single user, so user
acceptance testing wasn’t our thing. Requirements traceability matrices don't come
up there either. We did talk about beta testing, and we did some of that—or rather
we got our users to do it. It took us a little while to recognize that we weren’t getting
a lot of return on our investment in time and effort. Users, in our experience, didn’t
have the skills or the motivation to test our product. They weren’t getting paid to do
it, their jobs didn’t depend on it, they didn’t have the focus, and they didn’t have the
time. Organizing them was a hassle, and we didn’t get much worthwhile feedback,
though we got some.

Microsoft regularly releases beta versions of its software (yes, I know, “and calls
them releases”). Seriously, this form of user acceptance testing has yet another
motivation: it’s at least in part a marketing tool. It’s at least in part designed to get
customers interested in the software; to treat certain customers as an elite; to
encourage early adopters. It doesn’t do much for the testing of the product, but it’s
a sound marketing strategy.

One of the first papers that I wrote after leaving Quarterdeck addresses beta testing
issues; you can find it on my Web site.

33

In the Agile world, it’s becoming increasing popular to create requirements
documents using a tool called Fit (which works with Excel spreadsheets and Word
documents) or Fitnesse, which works on a wiki Web page. The basic idea is to
create code and a series of tables of data that exercise the product and ask it
questions about its state. Developers write code (called “fixtures”) that feed the
tabular data to the application. The tables are stored in Word or Excel or in a simple
markup file within a Wiki page, and they’re intended to be run frequently. Upon
being run, the tool adds colour to the cells in the table—green for successes, and
red for failures.

A number of the Agilistas call these User Acceptance Tests. I much prefer to take
Brian Marick’s perspective: the tables provide examples of expected behaviour
much more than they test the software. This attempt to create a set of tools (tools
that are free, by the way) that help add to a common understanding between
developers and the business people is noble—but that’s a design activity far more
than a testing activity. That’s fine when Fit or Fitnesse tests are examples, but
sometimes they are misrepresented as tests. This leads to a more dangerous
view…

34

Fitnesse tests are sometime used as milestones for the completion of a period of
work. To the extent that the development group can say “The code is ready to go
when all of the Fitnesse tests run green.” I agree that the code is ready to go, but
where? I contend that at the point the Fitnesse stories are complete, the code is
ready for some serious testing. I’d consider it a mistake to say that the code was
ready for production. It’s good to have a ruler, but it’s important to note that rulers
can be of differing lengths and differing precision. In my opinion, we need much
more attention from human eyes on the monitor and human hands on the keyboard.
Computers are exceedingly reliable, but the programs running on them may not be,
and test automation is software. Moreover, computers don’t have the capacity to
recognize problems; they have to be very explicitly trained to look for them in very
specific ways. They certainly don’t have the imagination or cognitive skills to say,
“What if?”

My personal jury is still out on Fitnesse. It’s obviously a useful tool for recording test
ideas and specific test data, and for rerunning them frequently. I often wonder how
many of the repeated tests will find or prevent a bug. I think that when combined
with an exploratory strategy, Fitnesse has some descriptive power, and provides
some useful insurance, or “change detectors”, as Cem calls them.

35

I’ve certainly had to spend a lot of time in the care and feeding of the tool, time
which might have been better spent testing. There are certain aspects of Fitnesse
that are downright clunky—the editing control in the Wiki is abysmal. I’m not
convinced that all problems lend themselves to tables, and I’m not sure that all
people think that way. Diversity of points of view is a valuable asset for a test effort,
if your purpose is to find problems. Different minds will spot different patterns, and
that’s all to the good.

I frequently hear people—developers, mostly, saying things like, “I don’t know much
about testing, and that’s why I like using this tool” without considering all of the risks
inherent in that statement. I think the Agile community has some more thinking to
do about testing. Many of the leading voices in the Agile community advocate
automated acceptance tests as a hallmark of Agilism. I think automated acceptance
tests are nifty in principle—but in practice, what’s in them?

So: my point of view is that Fitnesse is a terrific thing, and can help testing
enormously. It’s just not the only thing.

36

A long time ago, I learned a couple of important lessons from two books: The Art of
Software Testing, by Glenford Myers. The first is that testing, real testing where
we’re trying to find problems, depends upon us searching for failures. We have to
find ways to break the software. All good books on software testing, in my
estimation, repeat this principle. We can’t prove the conjecture that the software
works, but at least we can disprove the conjecture that it will fail. Tests designed to
expose failures are powerful, and when those tests themselves fail, we gain
confidence. Tests that are designed to pass are relatively weak, and when those
tests pass, we don’t gain much confidence. In his book The Craft of Software
Testing, Brian Marick gave an excellent example in which one powerful hostile test
can provide seven different points of confirmation.

37

Recently, I’ve been involved with an organization that produces software that is
used by a passel of big banks. User acceptance testing here takes a couple of
months. There’s a month in-house, when the tables turn and the developers are
primarily in the business of supporting, rather than the other way around. That’s
called User Acceptance Testing. Then there’s a month of testing at the big banks
that use the software. It’s called User Acceptance Testing. So it’s not short, and it’s
not ceremonial. At the core, it’s not a terribly complicated application, but since it
involves thousands of transactions of some quantity of money each, since there are
fraud and privacy issues on the table, there is real risk. After we’ve spent a month
testing aggressively, the banks typically take several weeks to run their own tests.
In this case—if you’re a tester working for the banks, you are actively trying to find
problems during the user acceptance test. Here you really a defender of the gates;
heaven forfend, but if we’ve screwed up somehow, our software could sink your
software.

38

Still, there’s a risk that the model of testing in this context, to my mind, can be
heavily biased towards confirmation—making sure that stuff works—rather than
investigation—finding out new information about the software’s behaviour, exposing
it to weird input, resource starvation, and heavy loads; in practice making sure that
stuff doesn’t fail. Much of the testing is focus on traceability, repeatability,
decidability, and accountability. In some contexts, that could be a lot of busywork—
it would be inappropriate, I would argue, to apply these approaches to testing video
games. But I still contend that a testing a product oriented towards a technical or
organizational problem requires investigative behaviour.

In these contexts, we advocate exploratory testing in additional to scripted testing.
Exploratory testing is simultaneous design, execution, and learning. There’s
nothing particularly new about it—long before computers, great testers have used
the result of their last test to inform their next one. The way we like to think about it
and to teach it, exploratory testing encourages the tester to turn her brain on and
follow heuristics and hunches that lead towards finding bugs.

39

Make a catalog of people that we don’t like. We don’t like novice users, and we
don’t like experienced users either. Be as extensive and/or as funny as possible.
Then consider seriously: how are we failing to meet the needs of these people
when we test?

40

By the way, when I said earlier that the majority of user acceptance tests were confirmatory, I don’t
have any figures on this breakdown; I can’t tell you what percentage of organizations take a
confirmatory view of UAT, and which ones actually do some investigation. I have only anecdotes,
and I have rumours of practice. However, to the context-driven tester, such figures wouldn’t matter
much. The only interpretation that matters in the moment is the one taken by the prevailing culture,
where you’re at. I used to believe it was important for the software industry to come to agreements
on certain terms and practices. That desire is hamstrung by the fact that we would have a hard time
coming to agreement on what we meant by “the software industry”, when we consider all of the
different contexts in which software is developed. On a similar thread, we’d have a hard time
agreeing on who should set and hold the definitions for those terms. This is a very strong motivation
for learning and practicing context-driven thinking. Context-driven thinkers would support descriptive
dictionaries, rather than prescriptive ones.

Instead, context-driven testers should use some heuristics to help sort out the nature of the task at
hand. Context-driven thinking is all about appropriate behaviour, solving a problem that actually
exists, rather than one that happens in some theoretical framework. It asks of everything you touch,
“Do you really understand this thing, or do you understand it only within the parameters of your
context? Are we folklore followers, or are we investigators?” We try to look carefully at what people
say, and how different cultures practice this. We're trying to make better decisions for ourselves,
based on the circumstances in which we're working. This means that context-driven testers shouldn’t
panic and attempt to weasel out of the service role: “That’s not user acceptance testing, so since our
definition doesn’t agree with ours, we’ll simply not do it.” We don’t feel that that’s competent and
responsible behaviour.

41

So I’ll repeat the definition. Acceptance testing is any testing done by one party for
the purpose of accepting another party's work. It's whatever the acceptor says it is;
whatever the key is to open the gate—however secure or ramshackle the lock. The
key to understanding acceptance testing is to understand the dimensions of the
context.

Think about the distinctions between ceremony, demonstration, self-defense,
scapegoating, and real testing. Think about the distinction between a decision rule
and a test. A decision rule says yes or no; a test is information gathering. Many
people who want UAT are seeking decision rules. That may be good enough. If it
turns out that the purpose of your activity is ceremonial, it doesn't matter how badly
you're testing. In fact, the less investigation you’re doing, the better—or as
someone once said, if something isn’t worth doing, it’s certainly not worth doing
well.

42

43

