Rapid Software Testing in Agile Contexts

Michael Bolton
DevelopSense
http://www.developsense.com
@michaelbolton
michael@developsense.com

James Bach
Satisfice
http://www.satisfice.com
@jamesmarcusbach
james@satisfice.com

(with helpful comments from International Society of Software Testing members: Anne-Marie Charrett, James Lyndsay,
Simon Morley, and Ben Kelly; graphic design help from Mary Alton....and credit to Scott Barber for the title)

A very brief word from our sponsor: Need help with training or consulting in software
testing in Agile or other contexts? | help people to solve development and testing

problems they didn’t know they could solve. Please contact me if you need help. And now,
on with the presentation.

Testing is testing.
Agile is context.

(DevOps is context too. Calm down.)

Testing Is Testing; Agile Is Context - 2

Testing, as we’ll see later in more detail, is evaluating a product by learning about it
through exploration and experimentation. Testing has always been about that.

Agile software development got its name in the early years of this century as a group of
developers met to discuss ways in which they approached software development as a craft.
After they declared the Manifesto for Agile Software Development, many different
approaches, heuristics, tools, and techniques came to prominence. Excellent testing adapts
to all of those different context factors.

DevOps means, at its centre, “development and operations people working together to
accomplish the goals of the business.” That’s a fine thing — but how badly have we lost our
way when that sounds like a radical, innovative idea?

In any case, testing is always testing — the process of evaluating something by learning
about it through exploration and experimentation. Testing deepens our understanding of
things by our interactions with them. Testing might include occasional bursts of confirming
things that we know, but serious testing involves challenging what we know.

Two Fundamental Testing Questions

Is there a problem here?
Are we okay with this?

If you don’t answer these questions,
people won’t trust you.
That’s when they start asking silly questions.

Testing Is Testing; Agile Is Context - 3

As a tester, looking down at what I’'m testing, I'm focused on finding problems that threaten
the value of the product. I'm continually asking myself, “Is there a problem here?” You can
read more about that:

http://www.developsense.com/blog/2009/09/pass-vs-fail-vs-is-there-problem-here/
http://www.developsense.com/blog/2007/04/big-questions-of-testing/

As | do that, since I’'m always working on things that are to some degree new, I'm
encountering problems and obstacles. | might not have access to important information;
the developers might not be available; the product might be in rough shape, and
investigating and reporting the bugs might take time away from deeper testing. Testability
might be lacking. My equipment and tools might not be up to the task at hand. I'm also
imagining looking up over my shoulder at my client and the other stakeholders, who are
looking down and seeing those stumbling blocks, not only in the testing but in the overall
project. So I'm also asking everyone concerned, “Are we okay with this?”

What do managers and developers
really want from testers?

An answer to this question:
Are there problems

that threaten

the on-time successful
completion of the project?

We test to obtain answers to that
question.

Testing Is Testing; Agile Is Context - 4

| haven’t always been a tester. As a former developer, and a former project manager for a
best-selling piece of software, | can assure you”: almost everything that we’re asked to do
as testers centres around this fundamental question: Are there problems that threaten the
on-time, successful completion of the project? Note that I’'m using “project” in a very
expansive sense: the project might be to release a product, to update a web site, to
develop a new feature, to modify a line of code, or to sustain a business... anything that
people are doing for which they ask our help.0

Rapid Software Testing

Rapid Software Testing is a mind-set
and a skill-set of testing
focused on how to do testing
more quickly,
less expensively,
and more credibly and accountably.

RST is focused on how people
learn and self-organize under pressure.
We can apply it to any context.

Testing Is Testing; Agile Is Context - 5

Rapid Software Testing is a mind set—a particular way of looking at the world; and a skill
set—a particular set of things that we practice and get better at. Rapid Software Testing
involves considerations of skill, personal integrity, improved focus on the underlying need
for testing tasks, improved appreciation for the stakeholders of testing tasks, and
knowledge of the possible techniques and tools that could be brought to bear to improve
efficiency.

Rapid Software Testing is intended to be a context-driven approach to software testing. The
methodology is designed to adapt to any kind of testing context. We’ve applied these
approaches in financial institutions, in court cases, in testing of medical devices, in
commercial shrink-wrapped software, in retail management, in insurance companies, to
games... and our students have applied them in many other contexts as well.

Rapid Software Testing isn’t centred around the development model, but around preparing
the skills and the mindset of the tester to respond to the development model, whatever
that might be. The development model of a project is an element of its context. Rapid
Software Testing can be applied to traditional development, Waterfall, Scrummerfall,
Moneyball, Agile, Fragile... because

Rapid Software Testing Premise #1

Software is developed for
people, by people

(and people are to some
degree unpredictable)

Testing Is Testing; Agile Is Context - 6

Software projects and products are relationships between people, who are creatures
both of emotion and rational thought. Yes, there are technical, physical, and logical
elements as well, and those elements are very substantial. But software development is
dominated by human aspects: politics, emotions, psychology, perception, and cognition. A
project manager may declare that any given technical problem is not a problem at all for
the business. Users may demand features they will never use. Your fabulous work may be
rejected because the programmer doesn’t like you. Sufficiently fast performance for a
novice user may be unacceptable to an experienced user. Quality is always value to some
person who matters. Product quality is a relationship between a product and people, never
an attribute that can be isolated from a human context.

http://www.developsense.com/blog/2012/09/premises-of-rapid-software-testing-part-1/

Rapid Software Testing Premise #2

Projects get developed under
uncertainty and time pressure

(because every product is new,
and people want it NOW)

Testing Is Testing; Agile Is Context - 7

Each project occurs under conditions of uncertainty and time pressure. Some degree of
confusion, complexity, volatility, and urgency besets each project. The confusion may be
crippling, the complexity overwhelming, the volatility shocking, and the urgency desperate.
There are simple reasons for this: novelty, ambition, and economy. Every software project is
an attempt to produce something new, in order to solve a problem. People in software
development are eager to solve these problems. At the same time, they often try to do a
whole lot more than they can comfortably do with the resources they have. This is not any
kind of moral fault of humans. Rather, it’s a consequence of the so-called “Red Queen”
effect from evolutionary theory (the name for which comes from Through the Looking
Glass): you must run as fast as you can just to stay in the same place. If your organization
doesn’t run with the risk, your competitors will—and eventually you will be working for
them, or not working at all.

http://www.developsense.com/blog/2012/09/premises-of-rapid-software-testing-part-1/

Rapid Software Testing Premise #3

People can be careless,
inexperienced, or incompetent,
and that’s NORMAL

(because people aren’t perfect,
and don’t know everything)

Testing Is Testing; Agile Is Context - 8

Despite our best hopes and intentions, some degree of inexperience, carelessness, and
incompetence is normal. This premise is easy to verify. Start by taking an honest look at
yourself. Do you have all of the knowledge and experience you need to work in an
unfamiliar domain, or with an unfamiliar product? Have you ever made a spelling mistake
that you didn’t catch? Which testing textbooks have you read carefully? How many
academic papers have you pored over? Are you up to speed on set theory, graph theory,
and combinatorics? Are you fluent in at least one programming language? Could you sit
down right now and use a de Bruijn sequence to optimize your test data? Would you know
when to avoid using it? Are you thoroughly familiar with all the technologies being used in
the product you are testing? Probably not—and that’s okay. It is the nature of innovative
software development work to stretch the limits of even the most competent people.
Other testing and development methodologies seem to assume that everyone can and will
do the right thing at the right time. We find that incredible. Any methodology that ignores
human fallibility is a fantasy. By saying that human fallibility is normal, we’re not trying to
defend it or apologize for it, but we are pointing out that we must expect to encounter it in
ourselves and in others, to deal with it compassionately, and make the most of our
opportunities to learn our craft and build our skills.

http://www.developsense.com/blog/2012/09/premises-of-rapid-software-testing-part-1/

THERE IS

RISK, AND

THERE WILL
BE BUGS

Rapid Software Testing Premise #4

A test is a performance,
not an artifact.

Testing is not test cases.

(because people bring tacit
knowledge, undocumented
actions, and variation to testing)

Testing Is Testing; Agile Is Context - 10

A test is an activity; it is a performance, not an artifact. Most testers will casually say that
they “write tests” or that they “create test cases.” That’s fine, as far as it goes. That means
they have conceived of ideas, data, procedures, and perhaps programs that automate some
task or another; and they may have represented those ideas in writing or in program code.
Trouble occurs when any of those things is confused with the ideas they represent, and
when the representations become confused with actually testing the product. This is a
fallacy called reification, the error of treating abstractions as though they were things. Until
some tester engages with the product, observes it and interprets those observations, no
testing has occurred. Even if you write a completely automatic checking process, the results
of that process must be reviewed and interpreted by a responsible person.

http://www.developsense.com/blog/2012/09/premises-of-rapid-software-testing-part-2/

Rapid Software Testing Premise #5

As testers, it’s our job to learn
about the software, and about
anything that threatens its
value to people

(so that our clients can make
informed decisions about it)

Testing Is Testing; Agile Is Context - 11

Testing’s purpose is to discover the status of the product and any threats to its value, so
that our clients can make informed decisions about it. There are people that have other
purposes in mind when they use the word “test.” For some, testing may be a ritual of
checking that basic functions appear to work. This is not our view. We are on the hunt for
important problems. We seek a comprehensive understanding of the product. We do this in
support of the needs of our clients, whoever they are. The level of testing necessary to
serve our clients will vary. In some cases the testing will be more formal and simple, in
other cases, informal and elaborate. In all cases, testers are suppliers of vital information
about the product to those who must make decisions about it. Testers light the way.

http://www.developsense.com/blog/2012/09/premises-of-rapid-software-testing-part-2/

Rapid Software Testing Premise #6

We commit to making our
testing fast, inexpensive,
and trustworthy

(and we must let our clients
know about anything that
threatens makes testing slow,
expensive, or unreliable)

Testing Is Testing; Agile Is Context - 12

We commit to performing credible, cost-effective testing, and we will inform our clients
of anything that threatens that commitment. Rapid Testing seeks the fastest, least
expensive testing that completely fulfills the mission of testing. We should not suggest
million dollar testing when ten dollar testing will do the job. It’s not enough that we test
well; we must test well given the limitations of the project. Furthermore, when we are
under constraints that may prevent us from doing a good job, testers must work with the
client to resolve those problems. Whatever we do, we must be ready to justify and explain
it.

http://www.developsense.com/blog/2012/09/premises-of-rapid-software-testing-part-3/

Rapid Software Testing Premise #7

We will not mislead our clients,
our colleagues, or ourselves

(which means goodbye to silly
metrics like test case counting
and pass/fail ratios)

Testing Is Testing; Agile Is Context - 13

We will not knowingly or negligently mislead our clients and colleagues. This ethical
premise drives a lot of the structure of Rapid Software Testing. Testers are frequently the
target of well-meaning but unreasonable or ignorant requests by their clients. We may be
asked to suppress bad news, to create test documentation that we have no intention of
using, or to produce invalid metrics to measure progress. We must politely but firmly resist
such requests unless, in our judgment, they serve the better interests of our clients. At
minimum we must advise our clients of the impact of any task or mode of working that
prevents us from testing, or creates a false impression of the testing.

http://www.developsense.com/blog/2012/09/premises-of-rapid-software-testing-part-3/

Rapid Software Testing Premise #8

We testers are responsible for
the quality of the our work, but
not for quality of the product.

(a quality product is a goal the
whole team shares, but testers
don’t have authority)

Testing Is Testing; Agile Is Context - 14

Testers accept responsibility for the quality of their work, although they cannot control
the quality of the product. Testing requires many interlocking skills. Testing is an
engineering activity requiring considerable design work to conceive and perform. Like many
other highly cognitive jobs, such as investigative reporting, piloting an airplane, or
programming, it is difficult for anyone not actually doing the work to supervise it effectively.
Therefore, testers must not abdicate responsibility for the quality of their own work. By the
same token, we cannot accept responsibility for the quality of the product itself, since it is
not within our span of control. Only programmers and their management control

that. Sometimes testing is called “QA.” If so, we choose to think of it as

quality assistance (an idea due to Cem Kaner) or quality awareness, rather than

quality assurance.

http://www.developsense.com/blog/2012/09/premises-of-rapid-software-testing-part-3/

Rapid Testing Building Blocks

Rapid Sofiware Testing uses a social and sysfems science approach
informed and inspired by Jerty Weinberg, Herbert Simon, and Harry Collins

Context. We listen and respond to the world around us.
Role and Self-Image. Taking responsibility for your work.
Mission and Motivation. Knowing what you are here to do.
Ethics and Integrity. Rejecting waste and deception.
Diversity. You need variety to cover complex products.
Relationships. Working with ever-changing connections.
Skills. Developing your abilities on the job.

Heuristics. Fallible ideas and tools that solve problems.
Exploration. Everything evolves; answers come over time.
Product Risk. Danger of a bad bug hiding in the product.
Tests. Not test cases... Actual tests!

Models. Respecting both tacit and explicit knowledge.

Testing Is Testing; Agile Is Context - 15

Structure—

Fur\:tion——‘:
pata—| — ~Mission
Interfaces: —(Product Elements I—’ | ~Information
P\atfurm—ﬂ R — | —Developer Relations
Operations—|

Time—"

- .
~Test Team
Project Environment & N
—Equipment and Tools
—Schedule

\ Test Item

Capability —. Deliverables
Reliability —. |
Usability —.
Charisma—.
Security —.

Performance— f:_(Quality Criteria J Test Techniques S
' sl |)

Heuristic Test Strategy Model |
). Function Testing

Domain Testing
Stress Testing
Flow Testing

Compatibility —. |

Scenario Testing

Claims Testing

User Testing

Risk Testing
Automated Checking

Supportability _
Testability
Maintainability 5
Portapility /|
Localizability _/

Development—

:
L

[[[{

{ Feellngs (experience) | | Principles (inference) ‘ People (conference)] { Mechanisms (reference)

=) 3
<{ Confusion | <{ Familiar Products \’,—{ A person who matters ‘ Documents with useful information
{ Annoyance | { Explainability | A person whose opinion matters ‘ Diagrams that illustrate ideas

H Amusement |

«{ History

~{ Comparable Products ‘

User Expectation

{ Disagreements between people who matter ‘ Comparable products ‘

Known good example output ‘

Known bad example output

{ Tools that help testers to see patterns

When you can internalize and describe
all this like a professional,
the amateurs don’t hassle you.

«{ Standards/Statutes

Lots of references here:
The Heuristic Test Strategy Model: http://www.satisfice.com/tools/htsm.pdf
How Models Change: http://www.developsense.com/blog/2014/07/how-models-change/

Oracles: http://www.developsense.com/blog/2015/09/oracles-from-the-inside-out/

What about...?
Quick Answers!

Reporting. Testers must learn to report and explain.

Speech. Precise!

Documentation. Concise! (Conversation is good.)
Management. We focus on activities, not artifacts.
Metrics. Never count test cases; maybe count time.

Automation. We use tools. Tools are important. Tools
can help check, and do many other things besides.

But testing can’t be automated.

All of these points are consistent with the Agile
Manifesto and Agile principles.

Testing Is Testing; Agile Is Context - 17

Call this “Checking” not Testing

operating a product
algorithmically to check
specific facts about it...

Mmeans
Observe Report
Interact with the product in Apply algorithmic Report any failed
specific, algorithmic ways to decision rules to those checks
collect specific observations. observations. algorithmically.

Testing Is Testing; Agile Is Context - 18

A check has three parts.
It requires an observation
The observation is linked to a decision rule
The observation and the rule can be applied algorithmically.

TESTING: A questioning activity that employs skills, senses, emotions and intelligence that we are
unable to automate.
CHECKING: An information gathering activity that, in principle, could be done by machine.

Testing encompasses checking, not the other way round.

http://www.satisfice.com/blog/archives/856

Some of our programmer friends have objected to this, say “Come on, that’s a silly distinction.” Our
response is “Oh? Then why do you distinguish between ‘compiling’ and ‘programming’? Why aren’t
you as excited about ‘automating’ programming as you are about ‘automating’ testing?”

Despite what certain Agilists might have you believe, checking is not new. In one of the earliest
books on computer programming (1957), Dan McCracken refers to “program checkout”. Jerry
Weinberg has told us that checking was important in the early days because computer time was
expensive, programmers were cheap, and the machinery was so unreliable.

A check can be performed...
—
|
= __|
by a machine by a human who has
that can’t think been told not to think
(but that is quick and (and who is slow and
precise) variable)

Even though a check itself is skill-free, good checking is surrounded by activities that require many skills,
including testing skill, programming skill, and project management skill.

Before the check happens,

e someone must recognize and identify a risk. That takes testing skill.

e someone must translate that risk into a test idea. That takes testing skill.

® someone must express a test idea as a one-bit, yes-or-no question. That takes testing and
programming skill.

* someone must turn the question into code. That takes programming skill.

e someone must determine the trigger—an event or action that launches the check. That takes testing
skill.

* someone must encode the trigger so that it can be acted on automatically. That takes programming
skill.

After the check happens,

e someone must read the bit. That takes programming skill.

e someone must aggregate bits. That takes programming skill.

* someone must design a report. That takes design and testing skill.

¢ someone must encode the report. That takes programming skill.

e someone must observe the report. That takes testing skill.

¢ someone must determine meaning. That takes testing and product management skill.

* someone must determine significance. That takes testing and project management skill.
e someone must respond. That takes at least one of several of the skills above.

Variability is not necessarily a liability of human testing. Requisite variety is essential to finding problems

that can appear in diverse ways in diverse places.

9.8.1 To verq R“C‘
9.8.1.1 Con mponents according to the General
Setup documept
9.8.1.2 P w Stjlg (instead of electrodes)
9.8.1.3 P pper Box.

9.8.1.4 Po er on the CQq ﬂ
9.8.1.5 Sst &‘ p’erature and power for the
Z e

\}
9.8.1.6 Set¥Est jig Ioad to nomjﬁalue LS IS’

9.8.1.7 Select nomin durat| owersetting
9.8.1.8 Press the Sta

9.8.1.9 Verify Zapper repo ﬁ?g valu +10% on

display. / I'I()I‘T

Testing is not test cases. The artifacts of testing are not “tests”; tests are what you think
and what you do. This is exactly the same as pointing out that the requirements are not
the requirements document; that the territory is not the map. We’ve talked about this in
several ways.

Short: http://www.developsense.com/blog/2017/02/the-test-case-is-not-the-test/

A little longer: http://www.satisfice.com/blog/archives/1346

Medium: “Test Cases Are Not Testing: Toward a Culture of Test Performance” by James
Bach & Aaron Hodder (in http://www.testingcircus.com/documents/TestingTrapeze-2014-

February.pdf#page=31)

Long: James Bach on “Test Cases are Not Testing”
https://www.youtube.com/watch?v=JLVP_Z5AoyM

Testing is...

Acquiring the competence,
motivation, and credibility for...

creating the conditions necessary for...

evaluating a product by learning
about it through exploration and experimentation,
which includes to some degree: questioning, study, modeling,
observation and inference, including...

...s0 that you help your clients to make
informed decisions about risk.

http://www.satisfice.com/blog/archives/856

In the past, we’ve said that testing is “questioning a product in order to evaluate it”. The “questions”
consist of ordinary questions about the idea or design of the product, or else questions implicit in the various
ways of configuring and operating the product. (Asking questions about the product without any intent to
operate it is usually called review rather than testing.) The product “answers” by exhibiting behavior, which
the tester observes and evaluates. To evaluate a product is to infer from its observed behavior how it will
behave in the field, and to identify important problems in the product.

Cem Kaner prefers this definition:
“Software testing is a technical investigation for the purpose of revealing the quality of a
software product on behalf of stakeholders.”

Kaner’s definition means the same thing as our definition in every material respect.
However, we sometimes prefer more concise wording.

Jerry Weinberg says that “testing is gathering information with the intention of informing a
decision”, another definition with which we agree.

One implication of all of these definitions is that you can test a product that doesn’t yet
exist in operable form. Review—the questioning process that precedes what we call test
execution—is still part of testing if it serves the process of test design and test execution, or
if it helps otherwise in our evaluation of the product.

What is the testing role on an
Agile team?

Testing Is Testing; Agile Is Context - 22

One role for a tester on an Agile team: a test jumper. See
http://www.satisfice.com/blog/archives/1372

What a Role Is NOT...

a declaration of the only things you are
allowed to do (not a prison)

a declaration of the things that you and you
only are allowed to do (not a fortress)

* permanent and unchanging

like a tattoo that you can’t remove

See http://www.developsense.com/blog/2015/06/on-a-role/.

What a Role Is...

* a commitment to perform some service(s)

an idea to focus commitments

a way to help organize effort on a team

a heuristic for explaining or defining work

like a hat that you wear

See http://www.developsense.com/blog/2015/06/on-a-role/.

What is the developer role?

» To develop is to connect the world of humans to the
world of machinery by creating new machinery to
satisfy humans.

* When someone is developing, that person has adopted
(if only for that time) a developer’s role.

* A developer’s role includes
— developing one’s self as a developer
— understanding the world of machinery
— connecting with the clients of development
— preparing and maintaining development tools

writing code

obtaining and applying feedback

Testing Is Testing; Agile Is Context - 25

What is the testing role?
* To test is to evaluate a product by learning about
it through exploration and experimentation.

 When someone is testing, that person has
adopted (if only for that time) a tester’s role.

* A tester’s role includes

— developing one’s self as a tester

— connecting with the clients of testing

— preparing for testing

— performing testing

— reporting the results of testing

Testing Is Testing; Agile Is Context - 26

What do we mean by good testing?

Focused on the mission
Adapted to the context
Fast

* Inexpensive

Diversified

Risk-focused

Testing Is Testing; Agile Is Context - 27

Three Testing Roles in Rapid Software Testing

Test Leads/Managers
\ Cuttivate and
support
RESPONSIBLE TESTERS

Cultivate and
Supervise
t= \ Supporting Testers

Use

Heuristics and Tools

Testing Is Testing; Agile Is Context - 28

To understand what we mean by “Responsible Testers”, see
http://www.satisfice.com/blog/archives/1364.

Why have a dedicated testing role?
Because changing mindsets is HARD.

I Business analyst skill focus
Tester skill focus

[| Developer skill focus

NOTE: We do NOT claim that this work must be done by different people, or
that the people must have different roles. We DO claim that having skilled
people focused on testing on an Agile team (collaborating with each other) is a
powerful heuristic for addressing the mindset switching problem.

Testing Is Testing; Agile Is Context - 29

Critical Distance

“Critical Distance” refers to the difference between one perspective and another.
Testing benefits from diverse perspectives.

Testing
Mindset

Mindset '

- -

Shallow testing is easy at a close critical distance.
Deeper testing, more like users, or more focused on more diversified risk,

tends to require or create more distance from the builder’s mindset.
Testing Is Testing; Agile Is Context - 30

Relax... a role is a heuristic, not a prison.

If | am a developer, can | do testing? Of course!

As a developer, you already do testing. And you will have to
sharpen your skills and cope with certain handicaps and biases if
you want to do great testing.

If | am a tester, can | make quality better? Sure!

And if you do that, you will have adopted, at least temporarily,
some kind of developer role. It’s hard to wear two hats at once.

If | am a goalie, can | score goals, too? No rule against it!

But if you come forward, your team’s goal is open. And the
person covering it can’t use his hands.

If | am a janitor, can | offer suggestions to the CEO? Hey, why not?
But her role is not necessarily to listen, or to comply.

If am not the driver of a car, can | grab the steering wheel?

Go ahead... but only if the driver is incapacitated.

Testing Is Testing; Agile Is Context - 31

Should testers ONLY look for bugs?
Of course not. But finding deep, rare,
subtle, hidden, or intermittent
problems that threaten the value of the
product is an important task

in creating a valuable product. That
task requires skill and critical distance.
Skilled testers, working at close social
distance but far critical distance, focus
on that task.

See “On a Role” http://www.developsense.com/blog/2015/06/on-a-role/

Testing Is Testing; Agile Is Context - 32

How do we do development?

Discover something worth building
Build some of it

Build it virtuously

Study what we’ve built

...and iterate!

Testing Is Testing; Agile Is Context - 33

The Universal Development Cycle

Discover something worth building.

-
=)

"}l JO Swios p|ing

(-— Study what we built.

Build it virtuously.

Testing Is Testing; Agile Is Context - 34

I'd like to see the center bubble larger

Traditional Development Cycle

Discover something worth building.

N

After the one very long loop,
a very few short, panicky ones.

~
,J

— Aiieeel
Look at all the bugs!

Make development ponderous Almost
—slow and expensive. all of it.

Study what we built.
"M O dwos pjing

~
=

Get it right the first time.

Testing Is Testing; Agile Is Context - 35

Plus: Testing as an Assembly Line

Understand Scope

o Context -
(TP1)

Organise
Test Plan
Development
(TP2)

Test Planning
Process

1
Identify & | Ao
Analyze Risks
(TP3)

Iden

Tre

Appl

h

Schedule nod

Manifesto for Agile Software Development

We are uncovering better ways of developing software by
doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

http://www.agilemanifesto.org

Testing Is Testing; Agile Is Context - 37

Core Agile Heuristics

“Our highest priority is to satisfy the customer
through early and continuous delivery

of valuable software.”

“Welcome changing requirements, even late in
development. Agile processes harness change

for the customer's competitive advantage.”

Testing Is Testing; Agile Is Context - 38

What does it mean
to do “Agile Development”?

Deliver frequently

— short sprints help prevent us from getting ahead of ourselves
Collaborate across roles

— building a quality product is a goal we all share

Cultivate craftsmanship

— “being Agile” won’t help us without study, practice and skill
Avoid excessive formalization

— individuals and interactions over processes and tools; working
software over comprehensive documentation

Apply appropriate heuristics

— be prepared for and tolerant of occasional failures
Develop and apply tools

— tools are everywhere in software development and testing
Seek a sustainable pace

— people who are overwhelmed tend not to do good work
Testing Is Testing; Agile Is Context - 39

Study what we built.

>

Agile Development Cycle

> Discover something worth building.

X .

Lots of very short fast loops so we

don’t get ahead of ourselves. 3
o
% Discover problems and fix them right away. §
o
o
Recognize that we’ll make -
SOME mistakes. Almost NONE of it. il
Build with change in mind. <

Testing Is Testing; Agile Is Context - 40

40

Agile Development Heuristics
(which ought to be infused with testing)

> Discover something worth building.
A\
=
‘5 g'
g - deliver frequently =
g - cultivate craftsmanship Q
- collaborate across roles 3
"‘r'a - avoid excess formalization
= - apply appropriate heuristics 3
; - seek a sustainable pace g
%. - develop and apply tools =
3 o
et
(V]
A

Build with change in mind. <

Testing Is Testing; Agile Is Context - 41

Developing the Design

Exploring definitions of done

— and expecting that they will be re-evaluated on the
basis of new information

Engaging with diverse users

— recognizing a broad interpretation of “user”
Specifying product with rich examples

— remembering that examples aren’t tests, but they help
Reviewing reports from the field

— informing design and testing with real-world problems
Exploring design trade-offs

— considering cost and value throughout

Refining user stories

— developing rich models of the product in its context

Testing Is Testing; Agile Is Context - 42

Developing the Design

...50 th;
at we o
..experiment
» imaginatively and
% suspiciously...
%,
" We,,,

Study what we built.

e @™
ol

&
) ...foster
testability...

0
As we 0%

Deep testing for hidden,
rare, or subtle
problems

Any preparation
needed for a test
process that allows
development to go quickly

Discover something worth building.

Principles and activities
of Agile development
that infuse all testing

Build with change in mind.

explore definitions of "done"

specify product with rich examples
review reports from the field
explore design tradeoffs

and review that helps
to avoid simple coding
errors and regressions

4050) We..
we

...develop .
the design... (f

©
50 thavﬁ

engage with diverse users

refine user stories

Output checking

31 JO 3Wos p|ing

As We g,
05,
o

...build cleanly
and simply...

o
that We can...

Testing Is Testing; Agile Is Context - 43

Building Cleanly and Simply

Automating low-level checks

— producing a vastly more testable product
Establishing shared coding style

— reducing the overhead of interpretation
Reviewing each other's code

— swatting bugs before they even get into the house
Building the product frequently

— making it possible to obtain constant feedback
Re-factoring for maintainability

— simplifying while anticipating change
Investigating and fixing bugs as we go

— swatting more bugs before they hide behind the drywall

Testing Is Testing; Agile Is Context - 44

Building with Change in Mind

...50 th;
at we o
..experiment
» imaginatively and
% suspiciously...
%,
" We,,,

Study what we built.

e @™
ol

...foster
testability...

&
o
b4

0
As we 0%

Deep testing for hidden,
rare, or subtle
problems

Any preparation
needed for a test
process that allows
development to go quickly

Discover something worth building.

Principles and activities
of Agile development

that infuse all testing

Build with change in mind.

we...
e 40 50
...develop .
the design... (f
o
- othe
explore definitions of "done" -
engage with diverse users
specify product with rich examples [w]
review reports from the field E
explore design tradeoffs o
refine user stories g
automate low-level checks D
establish shared coding style 90.
investigate & fix bugs as we go =
review each others' code *
build the product frequently
refactor for maintainability As we d,
050
...build cleanly
and simply...
04
¥ we can...

Testing Is Testing; Agile Is Context - 45

Different Types of Testability

Project-related testability

— good, close relations on the team; good ﬂ
infrastructure

Intrinsic testability l!'-
— visibility and controllability built into the
product il I

Epistemic testability
— adeveloping understanding of the risk gap E
Value-related testability]
— knowing what clients and customers value

Subjective testability http://www.satisfice.com/tools/testable.pdf

— the skill-set and mindset of the tester,
relative to the product and the test space

Testing Is Testing; Agile Is Context - 46

Fostering Testability

Preparing test infrastructure

— selecting and developing tools and environments
Making the product easy to test

— advocating for visibility and controllability
Identifying and exploring product risk

— digging up buried assumptions

Minimizing disruption when changing product

— making testing a service, not an obstacle

Removing obstacles and distractions to testing

— addressing issues so testing can go quickly and smoothly
Testing in parallel with coding

— accepting anything our clients want tested at any time

Testing Is Testing; Agile Is Context - 47

5o that
€,
&

Fostering Testability

4050) We..
we

.),
...experiment develop
g imaginatively and Discover something worth building. the design... ¢§
‘tp%suspiciously... *
%o, We, : . explore definitions of "done" 4_.501:\\3"
" Deep testing for hidden,
™) engage with diverse users
= rare, or subtle S Y
£ specify product with rich examples [w]
-] problems review reports from the field E
[.. Yl explore design tradeoffs o
3 Principles and activities . »
- refine user stories o
© of Agile development 3
'E prepare test infrastructure that infuse all testing automate low-level checks (D
< make the product easy to test establish shared coding style 90.
L) test in parallel with coding investigate & fix bugs as we go =
3 identify and explore product risk review each others' code *
U] minimize disruption when changing product build the product frequently
e @l remove obstacles and distractions to testing refactor for maintainability As we do
x So
o 4
&
e ..foster i
8 er Build with change in mind. ~build cleanly
testability... and simply...
L/
As we 405" at We can...

Testing Is Testing; Agile Is Context - 48

Experimenting Imaginatively
and Suspiciously

Assessing whether we are done

— recognizing how we might not be done yet
Modelling in diverse ways

— covering the product from many perspectives
Developing rich test data

— testing for adaptability, not just repeatability
Testing and checking against risks

— focusing testing on what matters
Investigating mysteries

— probing hidden, subtle, or rare problems
Telling compelling bug stories

— providing context to show how bugs might threaten value

Testing Is Testing; Agile Is Context - 49

RST’s Agile Quadrants in Detail

. L ...develop
g Imaginatively and Discover something worth building. the design... 4
‘tp%suspiciously... o
D e\
0 We... assess whether we're "done" explore definitions of "done" --~5°th
- model in diverse ways engage with diverse users
‘5 develop rich test data specify product with rich examples [w]
=} test & check against risks review reports from the field E
[investigate mysteries .. Yl explore design tradeoffs o
s 4 Principles and activities . "
tell compelling bug stories refine user stories)
® of Agile development 3
'E prepare test infrastructure that infuse all testing automate low-level checks D
make the product easy to test establish shared coding style ©
L) test in parallel with coding investigate & fix bugs as we go =
3 identify and explore product risk review each others' code *
U] minimize disruption when changing product build the product frequently
o Can- remove obstacles and distractions to testing refactor for maintainability As we do
& So,
5 foster build cleanl
o : : : H ...build clean
2 o Build with change in mind.) y
testability... and simply...
; o,
As we 405" at We can...

5o that
€,
&

..experiment

Testing Is Testing; Agile Is Context - 50

£ 4050 We-
W

50

Development isn’t linear...

development is a fractal!

Testing Is Testing; Agile Is Context - 51

Neither development nor the testing that happens within it is a linear process, like one that
happens on an assembly line. We are not simply assembling a product; we’re developing it,
in loops of analysis, design, coding, and evaluation. Each step feeds back into subsequent
iterations of the work. Building a new product requires us to learn how to build the
product, which we learn by trying to build the product. That learning happens at every
level, from an entire project, to development of a feature, to a story about that feature, to
a sprint, to an object or class to a line of code... Each iteration of building may include
discoveries, failed attempts, flashes of insight, minor stumbles, corrections... Each iteration
may be disrupted by new requirements, or newly-recognized aspects of requirements we
thought we understood.

Agile development is not about doing everything as quickly as possible. Agile development
is about responding quickly and nimbly when things knock us off balance. Rapid response
to change requires rapid feedback—the kind of feedback that Rapid Software Testing is
intended to provide.

— Discover something worth builing, —
— Develop the design sothat we.can build some of it
——+ Build cleanly and simply so that we can build with change in mind. >

— Fosfer testabilty study what we built
Experiment imaginafively and suspiciously so that we can_ —»
——» discover something worth having bull,. ———

Stories, spikes,
iterations, sprints,
releases; whatever

name for some burst

of development S i
@?é $’$ il
work. FEdS S
§$§ £ ;gf' .
SELTE
. £ &
% e N
2, —— b om By uwos 2 « SE S
S S N i e il L
%% \ 10 3 [ouym Rpnjs uso s i 05 AYGe{S3] S04 = 3 5
"“,%%\ < Ul uy 3Buetd Y ppng ue am v os Aidwus pue Aueapo ppog -« "g v

- 1140 3ulos pjing o ubisap ay dojprag «——

‘\ -

Buping ypiom Bunyipuios sA00si] «——

Testing Is Testing; Agile Is Context - 52

You don’t have to wait for the end of

the sprint. You can test...
...the product

...a part of the product

...some document describing the product
...a diagram that models the product

...a product like this product

...stories or ideas about the product

Testing is the process of evaluating a product by
LEARNING about it
through exploration and experimentation.

Testing Is Testing; Agile Is Context - 53

Think expansively about what might constitute a “product”. A product is something that
someone has produced. Even ifit’s an only an idea, you can explore it, and you can
perform thought experiments on it.

High Value of Product

A

<
Y]
£ 2
> - > B
m v,
c N,
< =1

o

Low Cost of Development

http://agilemanifesto.org/principles.html

Testing Is Testing; Agile Is Context - 54

Productive Polarities

Defocusing EnSVlSIonlng
uccess
Anticipating Focusing
Failure

Testing Is Testing; Agile Is Context - 55

Don't just test to confirm

Don’t...

Don't forget what we've learned

Don't get rushed or sloppy... or paralyzed

juawdoyanap waymiano 3,uoq

Testing Is Testing; Agile Is Context - 56

/} A story about how GOOD thaf testing was..

...about what it does, how it failed, and how it might fail...

...in ways that matter to your various clients.

U A story about HOW YOU TESTED it...

' ..how you operated and observed it...

...how you recognized problems...

...what you have and have not tested yet...
...what you won't test at all (unless the client o

...the risks and costs of testing or not testing...
...what made testing harder or slower...
...how testable (or not) the product is...
...what you need and what you recommend.

Testing Is Testing; Agile Is Context - 57

Technical Suggestions

Resist test cases and scripts; focus on test
activities and the testing story.

Let risk guide your testing; focus testing on
risks.

Test in short, uninterrupted sessions; review
and discuss them; seek and provide feedback.

Avoid premature, excessive formalization.

Keep documentation concise.

Use recording tools like an airplane “black box”.
Emphasize exploratory scenario testing.

ASK FOR TESTABILITY!

Testing Is Testing; Agile Is Context - 58

Tools?

DON’T use them to “do” the testing. Tools
don’t do testing; YOU do.

DON’T become fixated on tools.
DO prefer lightweight tools, in general.

DO use them to support testing.
— setup and configuration management

— data generation

— probing the product

— visualization

— logging and recording

— automated checking (most efficiently at the unit
and integration levels; not so much at the GUI)

Testing Is Testing; Agile Is Context - 59

Social Suggestions

Practice explaining testing.
Declare your role and commitments.

Don’t accept responsibility for the quality of the
product.

Embed yourself (or your testers) with the
development team.

Ask for testability.

Watch where time and effort are going.
Note the advantages of developer testing.
Resist bureaucracy.

Be a service to the project, not an obstacle.

Testing Is Testing; Agile Is Context - 60

RST Agile Testing Ecosystem v1.0

James Bach and Michael Bolton

we...
50 that we s, s‘”e 30590
..experiment - ¥
. tivel d = - == ...develop .
| maginatively:an Discover something worth building. the design... ¢
"za% suspiciously... &
S v
0, We.., assess whether we're "done" explore definitions of "done" ---5°‘“
4 modelin diverse ways engage with diverse users
'5 develop rich test data specify product with rich examples W
2 test & check against risks « review reports from the field E,
- deliver frequently =3
U investigate mysteries - cultivate craftsmanship explore design tradeoffs Q.
3 tell compelling bug stories - collaborate across roles refine user stories 8
""s - avoid excess formalization 3
-§ prepare test infrastructure ::]::Lyaaszzrtgmlaabt\z r;:?elsms automate low-level checks (1]
g make the product easy to test - develop and apply tools establish shared coding style 9.‘
L] test in parallel with coding investigate & fix bugs as we go =
3 identify and explore product risk review each others' code *
Y minimize disruption when changing product build the product frequently
o AN remove obstacles and distractions to testing refactor for maintainability As we do
‘@c" o,
S
) ...foster . . . : ...build cleanl
3 =, Build with change in mind. build cleanty
- testability... and simply...
o,
As we 805%" ¥ we cap,.,

Copyright 2014 Satisfice Inc. and DevelopSense
hitp:/iwww.salisfice.com hitp:/Awww.developsense.com
Questions or It i m m

Testing Is Testing; Agile Is Context - 61

Further Reading

In addition to the bibliographies in Agile Testing and More Agile
Testing, have a look at...

“Test Cases Are Not Testing: Toward a Culture of Test Performance”
by James Bach & Aaron Hodder
— http://www.testingcircus.com/documents/TestingTrapeze-2014-
February.pdf#tpage=31)
Testing Problems are Test Results
— http://www.developsense.com/blog/2011/09/testing-problems-are-
test-results/
Testers: Get Out of the QA Business

— http://www.developsense.com/blog/2010/05/testers-get-out-of-the-
quality-assurance-business/

Testing and Checking Refined

— http://www.satisfice.com/blog/archives/856
RST Methodology: Responsible Tester

— http://www.satisfice.com/blog/archives/1364

4

Testing Is Testing; Agile Is Context - 62

Further Reading

Test Jumpers: One Vision of Agile Testing
— http://www.satisfice.com/blog/archives/1372
Done, the Relative Rule, and the Unsettling Rule

— http://www.developsense.com/blog/2010/09/done-the-relative-rule-
and-the-unsettling-rule/

The Undefinition of Done
http://www.developsense.com/blog/2011/07/the-undefinition-of-done/

At Least Three Good Reasons for Testers to Learn to Program

— http://www.developsense.com/blog/2011/09/at-least-three-good-
reasons-for-testers-to-learn-to-program/

Testing Is Testing; Agile Is Context - 63

