
1

Testers:
Get Out of the Quality
Assurance Business!

Michael Bolton
DevelopSense

http://www.developsense.com
Agile Testing Days

Berlin, 2010

Updates

• This presentation is ALWAYS under construction
• Updated slides at http://www.developsense.com/past.html
• All material comes with lifetime free technical support

I’m An Agile Skeptic
• To me, Agile means

– The Agile Manifesto
– “able to move quickly and easily”

• Oxford Dictionary of English
– de-emphasizing testing for repeatability

• which is relatively straightforward
– re-emphasizing testing for adaptability,

especially to the human element
– for testers, focusing on testing skills
– focusing on not being fooled

Let’s Start With a Simple Question: The Quality Answer
• Quality is “value to some person(s)”

– Jerry Weinberg
• “…who matter.”

– James Bach and Michael Bolton
• Decisions about quality are always

political and emotional
– made by people with the power to make them
– made with the desire to appear rational
– yet ultimately based on how those people feel

2

If you’re a tester, do you…

hire the programmers?

fix problems in the code?

design the product?

allocate staff?

set the company’s strategic direction?

allocate training budgets?

set the schedule?

decide on raises?

control the budget?

negotiate customer contracts?

choose the development model?

set the product scope?
decide which bugs to fix?

write the code?

fire some programmers?

produce manuals?

No?

How Can You, Tester, Assure Quality?

YOU CAN’T.
But not to worry.

That’s not
the tester’s job.

We Can’t Assure Quality

A Computer Program

A set of instructions
for a computer.

See the Association for Software Testing’s
Black Box Software Testing Foundations course, Kaner & Bach

A House

A set of building materials,
arranged in the

“House” design pattern.

3

A House

Something for people to live in.

Kaner’s Definition of a Computer
Program

• A computer program is
• a communication
• among several people
• and computers
• separated over distance and time
• that contains instructions that can be run

on a computer.
The purpose of a computer program is

to provide value to people

Implications of Kaner’s
Definition

• A computer program is far more than its code
• A software product is far more than the

instructions for the device
• Quality is far more than the absence of errors

in the code.
• Testing is far more than writing code to assert

that other code returns some “correct” result

Testing is an investigation of code, systems,
people, and the relationships between them.

Quality is value to some person(s).

What Is Testing?

• Excellent testing is not a branch of computer science
– focus only on programs, and you leave out questions of value

and other relationships that include people

• To me, excellent testing is like anthropology
– highly multidisciplinary
– doesn’t look at a single part of the system

• Anthropology focuses on investigating
– biology
– archaeology
– linguistics
– cultures

Software testing is the investigation of systems
composed of people, computer programs, and

related products and services.

So What Is Testing?
• “Questioning a product in order to evaluate it”

– James Bach

• “Gathering information with the intention of informing a
decision.”
– Jerry Weinberg

• “A technical, empirical investigation of a product, done
on behalf of stakeholders, with the intention of revealing
quality-related information of the kind that they seek.”
– Cem Kaner

Testing Is More Than Checking
• Checking is a process of confirming and

verifying existing beliefs
– Checking can (and I argue, largely should) be

done by automation
– It is a non-sapient process

See http://www.developsense.com/2009/08/testing-vs-checking.html

4

Oh no! What Does “Non-Sapient” Mean?

• A non-sapient activity can be performed

by a machine
that can’t think

(but it’s quick and precise)

by a human who has been
instructed NOT to think

(and that’s slow and erratic)

What Is Sapience?

• A sapient activity is one that requires a
thinking human to perform

• We test not only for repeatability, but also for
adaptability, value, and threats to value

But…

• A good tester doesn’t just ask

• A good tester asks

Besides…
• Automation cannot

– program a script
– investigate a problem you’ve found
– determine the meaning or significance of a problem
– decide that there’s a problem with a script
– escape a script problem you’ve identified
– determine the best way to phrase a report
– unravel a puzzling situation

Acceptance Tests Are Examples
• Examples are NOT tests.
• Experiment is NOT experience.
• When an acceptance test passes, it means that

the product appears to meet
– some requirement
– to some degree
– in some circumstance
– at least once
– on my machine
– this time

Some Problems With Acceptance Tests
• They’re set at the beginning of an iteration or

development cycle, when we know less about the
product than we’ll eventually

• Acceptance tests are examples. They do not (and
cannot) cover everything that might be important.

• Acceptance tests are checks, not tests.
• Talk about acceptance tests tends to leave out

questions of who is accepting what, and for what
purpose.

• Properly viewed, they should prompt rejection for
failing, rather than acceptance for passing.

• They should be called rejection checks.

5

But… How Will We Know When We’re Done?!

• You’re done testing when there are no more
questions that need answering
– see http://www.developsense.com/blog/2009/09/when-do-we-stop-test/

• You’re done developing when the project owner
decides that there’s no more valuable work to do
– see http://www.developsense.com/blog/2010/08/469/

• In a healthy environment, these decisions evolve
naturally
– and in an unhealthy environment, they evolve

artificially

What About Regression Tests?

There appears to be a presumption in many
Agile shops that regression tests

1. are intrinsically repeated tests
2. must be repeated in full on each build
3. must be automated
4. are essential to handle regression problems

The “Regression = Repeated” Problem

Two definitions:
1. Any repeated test.
2. Any test intended to show that quality

hasn’t worsened.
Yet…
• a repeated test might not show that

quality hasn’t worsened, even if it has
• a test that shows quality has worsened

might be a new test

The Repeat-Them-In-Full Problem

• Automated regression tests make
execution fast and cheap, BUT…

• A test declines in value as its capacity to
reveal new information diminishes

• High-level checks may not be risk-focused
• High-level checks may be unnecessary

when there are plenty of low-level checks

The Must-Be-Automated Problem
• Automation gives us tremendous gains in

execution speed at the cost of loss of
opportunities to observe

• As automation gets higher-level, it tends to be
– more complex
– more expensive
– less representative of most real-world behaviour

• which may be a good or a bad thing
– less aligned with things that make automation most

useful

See James Bach, “Manual Tests Cannot Be Automated”

http://www.satisfice.com/blog/archives/58

Is Regression Your Biggest Risk?
• Before the Agile Manifesto was declared, a group of

experienced test managers reported that regression
problems ran from 6-15% of discovered problems

• In Agile shops, we now (supposedly) have
– TDD
– unit tests
– pairing
– configuration management
– build and version control
– continuous integration

• Is regression a serious risk?
• If so, can testing (whether automated or not) fix it?
• Is regression really a symptom of problems elsewhere?

6

Testing Is More Than Checking

• Testing is an ongoing, continuously
re-optimizing process of

Testing is Exploring
• Our community* sees testing as exploration,

discovery, investigation, and learning
– Testing can be assisted by machines, but can’t be

done by machines alone
– Testing is a sapient process

I can’t test,
but I can help

you act on
test ideas.

See http://www.developsense.com/2009/08/testing-vs-checking.html

* The Context-Driven Testing community

What IS Exploratory Testing?
• I follow (and to some degree contributed to) Kaner’s

definition, which was refined over several peer conferences
through 2007:

Exploratory software testing is…

• a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of his or her work
• by treating test design, test execution, test result

interpretation, and test-related learning
• as mutually supportive activities
• that run in parallel
• throughout the project.

See Kaner, “Exploratory Testing After 23 Years”,
www.kaner.com/pdfs/ETat23.pdf

Whoa. Maybe it would
be a good idea to

keep it brief most of
the time…

“Parallel
test design,

test execution, and
learning.”

Irony Alert!

• We talk about checking with test cases
• We often manage testing with checklists

So What Are We Testers?

The tester doesn’t have to reach conclusions or make recommendations
about how the product should work. Her task is to expose credible
concerns to the stakeholders.

- Cem Kaner, Approaches to Test Automation, 2009 (my emphases)

We Are Sensory Instruments

7

Software Development
Is Not Much Like Manufacturing

• In manufacturing, the goal is to make zillions of widgets all the same.
• Repetitive checking makes sense for manufacturing, but…
• In software, creating zillions of identical copies is not the big issue.
• If there is a large-scale production parallel, it’s with design.

Software Development
Is More Like Design

• If existing products sufficed, we wouldn’t create a new one, thus…
• Each new software product is novel to some degree, and that means a

new set of relationships and designs every time.
• New designs cannot be checked only; they must be tested.

Testing of Design Is Like CSI
• There are many tools, procedures,

sources of evidence.
• Tools and procedures don’t define

an investigation or its goals.
• There is too much evidence to test

anything like all of it
• Tools are often expensive
• Investigators are working under

conditions of uncertainty and
extreme time pressure

• Our clients (not we) make the
decisions about how to proceed
based on the available evidence

These ideas come largely from Cem Kaner, Software Testing as a Social Science
http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf

Viewing Testing as a Service
Solves Many Problems

When are we
going to be

done eating?

What the…?

When testing is an investigative service,
we have exactly as much time
as the client is willing to give.

Windows Vista™ System Requirements

Viewing Testing as a Service
Solves Many Problems

If you complain that you need
requirements documents before you can test,

you’re not really testing; you’re checking.

If you discover that the requirements
documents have problems, your testing

has already revealed
interesting information…

…and testing can add a lot
of information to help

in solving those problems.

Other Relevant Comparisons
• Investigative reporters and journalists

– What’s actually going on? What’s the story?
• Anthropologists

– What do people in the real world actually do?
• Historians

– What can we learn from the past?
• Field botanists

– Why does this thrive over here, but not over there?
• Philosophers

– What do we know? How do we know we know it?
• Film critics

– Will this movie appeal to its intended audience?

8

Can’t We Help With Quality Tasks?
• Sure; (to me, at least) development teams

should be autonomous and self-organizing
– when you’re providing other services to your team,

that might be good and very useful.
– but that could be a problem if you’re not also testing.

• To the extent that your work is
– requested by your colleagues
– appreciated by your colleagues
– not busy work
– not busybody work
…rock on! Help out! But also test.

Where Do We Go From Here?

What Skills and Knowledge?

• Critical thinking
• General systems thinking
• Design of experiments
• Visualization and data presentation
• Observation
• Reporting
• Rapid learning
• Programming

What Skills and Knowledge?

• Measurement
• Anthropology
• Teaching
• Risk analysis
• Cognitive psychology
• Economics
• Epistemology
• Test framing

Yes, Exploratory Testing Requires Skill
• Doesn’t ANY testing (worth doing) require skill?

Well, we wanted
to go with

a skilled pilot…

But they’re just
so darned

expensive…

The value of test information
is directly related

to the skill of the tester. Hire (or train) testers with
the skills to provide you

with the information you seek.

Unhelpful Ideas,
Past Their Sell-By Date

9

“Automated” vs. “Manual” Tests

• “Manual” refers to the wrong body part
– it’s the brain, not the hands that do the work

• A good manual test cannot be automated
– if you think it can, it wasn’t a good manual test

• Automated tests cannot be done manually
– see http://www.satisfice.com/blog/archives/58
– see http://www.satisfice.com/blog/archives/99
– see http://www.kaner.com/pdfs/kanerRIM2009.pdf

More Unhelpful Ideas

• “Developers” vs. “Testers”
– we’re all developers; if anything, it’s “programmers”

• “Automated testers” vs. “manual testers”
– consider the “toolsmith” specialty instead

• “Quality assurance”
– testers don’t assure quality
– see

http://www.developsense.com/blog/2010/05/testers-
get-out-of-the-quality-assurance-business/

More Unhelpful Ideas

• Counting test cases
– a test case is a container for an idea
– do you measure your productivity in briefcases?
– the number of test cases is of little interest in itself
– see “The Case Against Test Cases”

• http://www.satisfice.com/presentations/againsttestcases.pdf

• Defect escape ratios
– since testers don’t decide to ship the product, “defect

escape ratios” are measures of product management,
rather than of testing on its own

More Unhelpful Ideas

• Passing test cases
– when a test passes, there may still be terrible

problems for which you are not applying an oracle
– when a test case fails, there’s a story; what is it?

• Pass/fail ratios
– a passing test case is a hope fulfilled
– a failing test case is a rumour of a problem
– the pass/fail unit is therefore hopes/rumours

• is this a valid basis for measurement?

We’re not here to
enforce The Law.

We are neither
judge nor jury.

10

We’re here to add value,
not collect taxes.

We’re here
to be a service
to the project,
not an obstacle.

Book References: Cem Kaner
• The Ongoing Revolution in Software Testing

– http://www.kaner.com/pdfs/TheOngoingRevolution.pdf
• Software Testing as a Social Science

– http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf

• Software Engineering Metrics: What Do They Measure
and How Do We Know? (with Walter P. Bond)
– www.kaner.com/pdfs/metrics2004.pdf

• Approaches to Test Automation
– http://www.kaner.com/pdfs/kanerRIM2009.pdf

• Lessons Learned in Software Testing
– Kaner, Bach, & Pettichord

Book References: Jerry Weinberg
• Perfect Software and Other Illusions About Testing
• Quality Software Management

– Volume 1: Systems Thinking
– Volume 2: First Order Measurement

• Quality Software Management: Requirements Before
Design

• An Introduction to General Systems Thinking
• The Psychology of Computer Programming

– Jerry Weinberg

Book References
• The Black Swan
• Fooled by Randomness

– Nassim Nicholas Taleb
• Secrets of a Buccaneer Scholar

– James Bach
• Everyday Scripting in Ruby

– Brian Marick

• How To Program
– Chris Pine

• Sciences of the Artificial
– Herbert Simon

• How Doctors Think
– Jerome Groopman

Book References
• Blink

– Malcolm Gladwell

• Tools of Critical Thinking
– David Levy

• Mistakes Were Made (But Not By Me)
– Carol Tavris and Eliot Aronson

• How to Lie With Statistics
– Darrell Huff

• The Visual Display of Quantitative Information
• Envisioning Information
• Visual Explanations
• Beautiful Evidence

– Edward Tufte

