
1

Six Short Talks
About Software Testing

Michael Bolton
DevelopSense

http://www.developsense.com
michael@developsense.com

+1 (416) 656-5160

Six Talks About Software Testing

1. Oracles
2. Three Sources For Project Information
3. Emotions and Oracles
4. Test Coverage
5. Confirmation vs. Exploration
6. Some Reasons Why Testing Takes So Long

Acknowledgements

• James Bach
• senior author of Rapid Software Testing, which

he and I teach
• Cem Kaner
• Jerry Weinberg

1. Oracles

What is an oracle?

No, not the database Not the database

2

But wait…

WE CAN’T.

Certainty isn’t
available.

But we DO have heuristics
Heuristics are fallible, “fast and frugal” methods of

solving problems, making decisions, or
accomplishing tasks.

“The engineering method is
the use of heuristics

to cause the best change
in a poorly understood situation
within the available resources.”

Billy Vaughan Koen
Discussion of the Method

Heuristics: Generating Solutions Quickly

• adjective:
“serving to discover or learn.”

• noun:

“Heuristic reasoning is not regarded as final and strict
but as provisional and plausible only, whose purpose

is to discover the solution to the present problem.”
- George Polya, How to Solve It

“A fallible method
for solving a problem or

making a decision.”

Oracles

An oracle is a heuristic principle or mechanism
by which you recognize a problem or make a decision.

“...it appeared at least once to meet some
requirement to some degree.”

“It works!”

It’s (not) OK according to an oracle.

Without an oracle you cannot recognize a problem

If you think you see a problem,
you must be using an oracle…

so what is it?

3

History

If a product is inconsistent with previous versions of itself,
we suspect that there might be a problem.

Hey, I liked the
menu bar?

How the #&@ do
I print now?

Image

If a product is inconsistent with an image that
the company wants to project, we suspect a problem.

Comparable Products

WordPad Word

When a product seems inconsistent with a comparable
product, we suspect that there might be a problem.

Claims

When a product is inconsistent with claims that important
people make about it, we suspect a problem.

User Expectations

When a product is inconsistent with expectations that a
reasonable user might have, we suspect a problem.

Purpose

When a product is inconsistent with its designers’ explicit
or implicit purposes, we suspect a problem.

4

Product

When a product is inconsistent internally—as when it
contradicts itself—we suspect a problem.

Statutes and Standards

When a product is inconsistent with laws or widely
accepted standards, we suspect a problem.

 the present version of the system is consistent with past
versions of itself.

 the system is consistent with an image that the organization
wants to project.

 the system is consistent with comparable systems.
 the system is consistent with what important people say it’s

supposed to be.
 the system is consistent with what users seem to want.
 each element of the system is consistent with comparable

elements in the same system.
 the system is consistent with implicit and explicit purposes.
 the system is consistent with applicable laws or standards.

We like consistency when…

 We like it when the system is not consistent
with patterns of familiar problems.

unless it’s a problem.

But...

• All of the consistency oracles are heuristic.

All Oracles Are Heuristic

• No single oracle can tell us whether a program or feature
is working correctly at all times and in all circumstances.

• Oracles are fallible and context-dependent.
• Oracles can be contradicted by other oracles.
• Multiple oracles may increase our confidence, but even

combinations of oracles are fallible.
• A problem revealed by a single oracle may devastating.
• Recognizing a different problem usually requires a

different oracle.
• A test designer need not be aware of an oracle in advance

of the observation, unless the test is designed to be run by
rote.

5

Consistency heuristics rely on the quality of your
models of the product and its context.

An oracle doesn’t tell you that there IS a problem.
An oracle tells you that you might be seeing a problem.

Rely solely on documented, anticipated sources of
oracles, and your testing will likely be weaker.

Oracles: Strength in Diversity How Do I Keep Track? HICCUPPS!

• History
• Image
• Comparable Products
• Claims
• User Expectations
• Purpose
• Product
• Statutes (or Standards)

…plus for “Familiar Problems”, add that inconsistent F!

Remember…

For skilled testers,
good testing isn’t just about

pass vs. fail.

For skilled testers,
testing is about

problem vs. no problem.

End of Talk One

2. Requirements

What are requirements?

What Are Requirements?

Do your requirements look like this?

6

What Are Requirements?

Or like this?

What Are Requirements?

Or like this?

What Are Requirements?

What about this?

Let’s talk about reification

Let’s talk about reification Reification

7

What Gets Subjected to Reification? What Gets Subjected to Reification?

Reification Happens When We…

• …count things that can’t be counted
• …point to things that can’t be pointed to
• …mistake relationships for attributes
• …confuse the container and the contents
• …mistake the map for the territory

The Swiss Alps

The Swiss Alps The Swiss Alps

You
Are

Here

8

The Swiss Alps

You
Are
Lost

So, Lesson One

Don’t confuse

and

“the territory”

“the map of
the territory”

So, Lesson One

Don’t confuse

and

“the requirements”

“the requirements
document”

So where do we get information?

• Yes, from documents
• marketing requirements documents
• functional specifications
• standards, such as RFCs
• note: documents often point to other documents
• help files
• user manuals

• Prototypes
• Previous products
• Test programs

So where do we get information?

• Product experience
• Domain and customer knowledge
• Testing or support knowledge
• Platform experience
• General knowledge
• Affordance
• (In)consistency heuristics

• about which more later

So where do we get information?

• One-on-one meetings
• Design meetings
• Scrums
• Bug triage meetings
• Technical support information
• Email threads
• Water-cooler conversations
• Explicit decisions from project management

9

Project Information is Often
Discovered and Refined

Project Information is Often
Discovered and Refined

To Enrich Testing

• Accept that context and choices change over
time as we learn

• Consider all the different forms of information
that are available to you

• Use your inferences, and practice describing
how you arrive at them

• Compare and contrast what different people say
in different for(u)ms

• Report inconsistencies that you observe
• …then let management manage the project

End of Talk Two

3. Emotions and Oracles

Rapid Software Testing

To be able to test a product
when it has to be tested right now,

under conditions of uncertainty,
in a way that stands up to

scrutiny.

10

Skill + Heuristics makes testing powerful

-Idea
-Idea

…

1. Do this
2. Then do this
3. Then do this
4. Then do this
5. And then this…

This…

…not this.

The skilled tester
remains in control

of the process.

Most conventional wisdom about testing
is empty folklore (yes, Agile Testing too)

Oracles

An oracle is
a heuristic
principle
or mechanism
by which
someone
might recognize
a problem.

(usually works, might fail)

(but not decide conclusively)

 Bug (n): Something that
bugs someone who matters

Oracles

• When something is
okay, it’s because an
oracle says so.

• When something is
wrong, it’s with respect
to some oracle.

Consistency (“this agrees with that”)
an important theme in oracles

Consistency heuristics rely on the quality of your
models of the product and its context.

Noticing Problems

• We run the program, and to some, it seems
like we just notice problems as we go along.

• Noticing problems is a very logical, objective,
dispassionate process.

One Way of Thinking of Testing
Give me only

programmers to
test my code!

Hey… how come
we have 650 open
reqs for SDET*s?

* SDET = “Software Development Engineer in Test”

And how come everybody gripes
about security and usability?

11

Besides… Automation Can’t…

anticipateempathize
judge

recognize
appreciate

predict

teach

strategize

learn
charter

work around a problem
make conscious decisions

collaborate resource
model

invent
get frustrated

become resigned
assess
evaluate

project

question

refine investigate speculate
suggest

contextualize elaborate

reframe

refocus

troubleshoot

Machines Don’t Get Aroused

No, not THAT
kind of arousal.

arousal (n.): a physiological and
psychological state of

being awake.

important in regulating
consciousness, attention,

and information processing.

Machines are cool…
• …but they don’t get aroused.
• That is, they don’t notice problems…
• …and they can’t even try.

Skilled testers don’t think
“pass or fail”?

Skilled testers ask
“is there a problem here”?

Machines and automated tests
don’t even know to ask.

Examples of Common Cognitive Biases

• Fundamental Attribution Error
• “THIS is what that is, and that’s all that it is.”

• Anchoring Bias (overcommitting to an idea)
• “I don’t have to reconsider.”

• Automation Bias (machines over people)
• “A machine told me; it must be true.”

• Reification Error (counting the uncountable)
• “How many ideas did you have today?”

Using Emotion To Help Overcome Bias

• Your biases may cause you to miss bugs
• An emotional reaction is a trigger to learning
• Without emotion, we don’t reason well

• check the psych literature

• When you find yourself mildly concerned
about something, someone else could be
very concerned about it

An emotion is a signal; consider looking into it

Emotional Triggers

• Impatience  an intolerable delay?
• Frustration  a poorly-conceived workflow?
• Amusement  a threat to someone’s image?
• Surprise  inconsistency with expectations?
• Confusion  unclear interface? poor testability?
• Annoyance  a missing feature?
• Boredom  an uninteresting test?
• Tiredness  time for a break?

12

Our clients are human

• Our humanity as testers helps to reveal important
information about our products.

• Emotions provide a rich source of oracles—
principles or mechanisms by which we recognize
problems.

• I’ll wager that any time we’ve seen a bug, our
emotions were a big factor in recognizing or
interpreting it.

• Why do so many in our profession seem to be so
oblivious to the value of emotions?

End of Talk Three

4. Congruence Bias

The biggest problem in testing?

I teach people
how to test software.

James Bach and I
co-author and teach a course
called Rapid Software Testing.

Why do we bother to teach
such an unimportant,

trivial subject?

13

It’s easy to trivialize something
if you haven’t

thought much about it.
At first, the testing task does

sound pretty trivial.

“Try it and
see if it works.”

Actually, that is
a pretty trivial task.

Most programs,
even really shoddy ones, can

do something, once.

So if we simply treat testing as
the task of showing that the

program can do something, once,
then testing is trivial.

14

But demonstrating that
something works isn’t usually

why we test.

Some people say that
we test

to assure quality.

But that doesn’t make sense. We don’t write the code.

We don’t debug the code. We don’t make changes to the
code.

15

We don’t have control over
the schedule.

We don’t have control over
the budget.

We don’t have control over
who works on the project.

We don’t have control over
the scope of the product.

We don’t have control over
contractual obligations.

We don’t have control over
bonuses for shipping on time.

16

We don’t have control over
whether a problem gets fixed.

We don’t have control over
customer relationships.

Other people,
particularly programmers and

managers,
do that stuff.

Quality is value to
some person(s)

who matter.

Quality is not
something in the product.

Quality is a relationship
between the product and

some person who matters.

17

Managers get to decide
who matters.

Decisions about quality
are political decisions.

Managers have the authority
to make business decisions.

So managers, not testers
are the real

quality assurance people.

Testers don’t
manage the project. We’re not the brain.

18

We’re the antennae.
We think observe and think

critically about software, and
report what we observe.

We don’t make the decisions;
we provide information to

decision-makers.

Some people say we test
to make sure the product
fulfills its requirements.

Yet “requirements” is like
“quality”.

A requirement
isn’t a thing in itself.

19

A requirement
a difference between
what we’ve got and

what someone wants.

That is, a requirement is
a relationship

between the product and the
person who wants it.

Presumably, they want it for
some purpose.

But like “quality” and
“requirement”,

purpose is a relationship.

Different people,
different purposes.

If a product fulfills its purpose,
we often say that

“the product works”.

20

So maybe we test to make sure
that it works.

“It works”,
according to Jerry Weinberg,
are the two most ambiguous

words in the English language.

“It works”,
according to Jerry Weinberg,
are the two most ambiguous

words in the English language.

“It”
can mean
anything.

“works”
means

seems to do something.

“It works”
really means

“it appears to do something…”

21

“…to meet some person’s
requirements…” “…to some degree…”

“…in some circumstance…” “…at some time…”

“…at least on my machine.” Product development is an
essentially optimistic activity.

22

If we weren’t
sufficiently optimistic,

we wouldn’t bother trying.

On the other hand,
when we’re optimistic,

we tend to forget something.

If the product
can work for some person,
it might fail for that person.

Forgetting to think about
how something might fail
(or forgetting to test for it)
is a problem with a name:

Congruence bias.
Congruence bias

is sometimes known as
confirmation bias.

23

Congruence bias
indulges our desire

to write a few simple tests
that are likely to pass.

Congruence bias also
suppresses our desire to

perform tests that might fail.

So the mission of testing
is subtly complex

—something like…
Try it to learn sufficiently…

…everything that matters… …about how it can work…

24

…and how it might fail. Let’s look at that again.

Try it to learn sufficiently
everything that matters
about how it can work
and how it might fail.

“Try it” means
to configure,

operate,
observe,

and evaluate it.

“To learn” means
to discover stuff

that we didn’t know before,
or that we weren’t sure about.

“Sufficiently”
does double duty—

“try it” sufficiently, and
“to learn” sufficiently.

25

“Everything that matters”
is also important
from two angles.

“Everything that matters”
both expands and contracts

our scope.

We don’t have a lot of time
to test stuff

that doesn’t matter.

And, by the same token,
we don’t want to miss testing

stuff that does matter.

“How it can work”
is not really that big a deal,

because we can demonstrate that
“it works”

at least once.

Choices about
the tests that we run (or not)

are governed by
our mindset.

26

The programmer tends to need to
run tests that confirm that the

product still works.

In fact, programmers can even
design automated unit or

acceptance tests to show that it
works.

Automating lower-level tests—
change detectors,

as Cem Kaner calls them—
is a fine thing for developers to do.

And, in fact, it might even be a
good idea to write some of
those tests before we write

some code.

This becomes a dangerous
business for a tester, though.

Why?

27

We will discover and learn
many things

as we develop the product.

We risk
wasting time and effort

when we write too many tests
(or test cases) too early

for a product that
we don’t yet understand.

So, it might be a good idea
to start with a few tests now,

and add more later.

We add more tests
as we learn more

about what we value, and
what might threaten that value.

Shouldn’t we also drop tests as we
learn more about things that pose

lesser threats?

To be effective, the tester
needs a different mindset from
the optimistic developers and

product managers.

28

Testers need mostly to run tests
that attempt to demonstrate that

the product might fail.

If the product works despite the
challenge, then we get a free

demonstration that the product
can work.

But when a tester performs
a confirmatory test,

she misses an opportunity
to perform an investigative test.

When we don’t
vary our tests...

When we don’t
apply what we’ve learned...

When we don’t
run towards the risk...

29

When we don’t
question our beliefs...

We run the risk of
missing serious problems

that threaten
the value of the product.

This risk is itself
a serious problem

that threatens
the value of the business.

How do we solve it?

By focusing on this: Testing is not merely
verification.

30

Testing is not merely
validation.

Testing is not merely
confirmation.

Testing is much more
importantly about

exploration.

Testing is much more
importantly about

discovery.

Testing is much more
importantly about

investigation.

Testing is much more
importantly about

learning.

31

Exploration,
not confirmation,

helps to defend our clients
(and ourselves)

from congruence bias

and that helps in one of our
primary jobs: defending value in a product.

Plus one more cool thing.
Remember that stuff about

different people,
different purposes?

32

Exploration can help us to
identify new people

and infer new purposes.

Finding a new purpose means
revealing new value for a

product.

This affords testers the chance
not only to defend value,

but to add it.

Congruence bias is a
big problem

in software development.

Thinking in terms
of skilled testing...

Thinking in terms of
exploration, discovery,

investigation, and learning
poses a big solution.

33

End of Talk Four 5. Test Coverage

Coverage is “how much of the product we have tested.”

What IS Coverage?

It’s the extent to which we have
traveled over some map of the product.

Models
• A model is a heuristic idea, activity, or object…

such as an idea in your mind, a diagram, a list of words, a spreadsheet,
a person, a toy, an equation, a demonstration, or a program

such as something complex that you need to work with or study

- A map is a model that helps to navigate across a terrain.
- 2+2=4 is a model for adding two apples to a basket that already has two apples.
- Atmospheric models help predict where hurricanes will go.
- A fashion model helps understand how clothing would look on actual humans.
- Your beliefs about what you test are a model of what you test.

• …that represents (literally, re-presents)
another idea, activity, or object…

• …whereby understanding something about
the model may help you to understand or
manipulate the thing that it represents.

A Map of the Toronto Subway Here’s Another One

34

A Map of Toronto’s Cultural Facilities So You Want Your Sidewalk Plowed?

A Bike Ride? What Is Covered Incidentally?

Different Maps Show Different Things

• The information that we care about may be
incidental to the “purpose” of the map

There are as many kinds of test coverage as
there are ways to model the system.

35

One Way to Model Coverage:
Product Elements (with Quality Criteria)

Capability
Reliability
Usability
Security

Scalability

Performance
Installability
Compatibility
Supportability

Testability

Maintainability
Portability

Localizability
• Structure
• Function
• Data
• Platform
• Operations
• Time

General Focusing Heuristics

• use test-first approach or unit testing for better code
coverage

• work from prepared test coverage outlines and risk lists
• use diagrams, state models, and the like, and cover

them
• apply specific test techniques to address particular

coverage areas
• make careful observations and match to expectations

To do this more rapidly, make preparation and artifacts fast and frugal:
leverage existing materials and avoid repeating yourself.

Emphasize doing; relax planning. You’ll make discoveries along the way!

General Defocusing Heuristics

• diversify your models; intentional coverage in one area can
lead to unintentional coverage in other areas—this is a
Good Thing

• diversify your test techniques
• be alert to problems other than the ones that you’re

actively looking for
• welcome and embrace distraction
• do some testing that is not oriented towards a specific risk
• use high-volume, randomized automated tests

How Might We Organize,
Record, and Report Coverage?

• automated tools (e.g. profilers, coverage tools)
• annotated diagrams (as shown in earlier slides)
• coverage matrices
• bug taxonomies
• Michael Hunter’s You Are Not Done Yet list
• James Bach’s Heuristic Test Strategy Model

• described at www.satisfice.com
• articles about it at www.developsense.com

• Mike Kelly’s MCOASTER model
• coverage outlines and risk lists
• session-based test management

Wait! What About Quantifying Coverage?

• A nice idea, but we don’t know how to do it
in a way that is consistent with basic
measurement theory

1. If we describe coverage by counting test
cases, we’re committing reification error.

2. If we use percentages to quantify coverage,
we need to establish what 100% looks like.

3. Complex systems may display emergent
behaviour.

Extent of Coverage

• Smoke and sanity
• Can this thing even be tested at all?

• Common and critical
• Can this thing do the things it must do?
• Does it handle happy paths and regular input?
• Can it work?

• Complex, extreme and exceptional
• Will this thing handle challenging tests, complex

data flows, and malformed input, etc.?
• Will it work?

36

End of Talk Five 6. When Do We Stop Testing?

If you’re a tester,
you’ve been asked…

…and if you haven’t been asked,
just stick around for a while.

But Hold On A Sec…

• There are always more conditions to check
• There are always more operations to perform
• There are always more platforms to set up
• There are always more variations of timing to try

37

Whether for a particular test, a given test cycle,
or a test project,

we stop testing when we decide to stop testing.

Testing Doesn’t Stop On Its Own

Whether for a particular test, a given test cycle,
or a test project,

we stop testing when we decide to stop testing.
development project,

The fact is…

The decision to ship a product

IS NOT…
• made by the testers
• governed by rules
• a technical decision
• based on whether

testing is finished

IS…
• made by the client
• governed by heuristics
• a business decision
• based on whether

development is finished

Another fact…

38

Test Session Effectiveness
• A “perfectly effective” testing session is one

entirely dedicated to test design, test
execution, and learning
• a “perfect” session is the exception, not the rule

• Test design and execution tend to contribute to
test coverage
• varied tests tend to provide more coverage than

repeated tests
• Setup, bug investigation, and reporting take

time away from test design and execution

Modeling Test Effort
Suppose that testing a feature takes two minutes

• this is a highly arbitrary and artificial
assumption—that is, it’s wrong, but we use
it to model an issue and make a point

• Suppose also that it takes an extra eight
minutes to investigate and report a bug that we
found with a test
• another stupid, sweeping generalization in

service of the point
• In a 90-minute session, we can run 45 feature

tests—as long as we don’t find any bugs

How Do We Spend Time?
(assuming all tests below are good tests)

Module Bug reporting/investigation
(time spent on tests that find bugs)

Test design and execution
(time spent on tests that find no bugs)

Number
of tests

A (good) 0 minutes (no bugs found) 90 minutes (45 tests) 45
B (okay) 10 minutes (1 bug, 1 test) 80 minutes (40 tests) 41
C (bad) 80 minutes (8 bugs, 8 tests) 10 minutes (5 tests) 13

Investigating and reporting bugs means….
or…

…or both.

• In the first instance, our coverage is great—but if we’re being assessed on the number of bugs
we’re finding, we look bad.
• In the second instance, coverage looks good, and we found a bug, too.
• In the third instance, we look good because we’re finding and reporting lots of bugs—but our
coverage is suffering severely. A system that rewards us or increases confidence based on the
number of bugs we find might mislead us into believing that our product is well tested.

What Happens The Next Day?
(assume 6 minutes per bug fix verification)

Fix
verifications

Bug reporting and
investigation today

Test design and
execution today

New tests
today

Total over
two days

0 min 0 45 45 90
6 min 10 min (1 new bug) 74 min (37 tests) 38 79
48 min 40 min (4 new bugs) 2 min (1 test) 5 18

Finding bugs today means….

or…

…or both.

…which means….

•…and note the optimistic assumption that all of our fixed verifications worked, and that we found
no new bugs while running them. Has this ever happened for you?

With a more buggy product

• More time is spent on bug investigation and
reporting

• More time is spent on fix verification
• Less time is available for coverage

With a less buggy product…
(that is, one that has had some level of testing already)

• We’ve got some bugs out of the way already
• Those bugs won’t require investigation and reporting
• Those bugs won’t block our ability to test more deeply

39

Test Early and Often!
• Recurrent themes in agile development (note the small A)

• test-first programming
• automated unit tests, builds, and continuous integration
• testability hooks in the code
• lots of customer involvement

• The ideas are
• to increase developers’ confidence in and commitment to

what they’re providing (“at least it does this”)
• to allow rapid feedback when it doesn’t do this
• to permit robust refactoring
• to increase test coverage and/or reduce testing time

Testing vs. Investigation
• Note that I just gave you a compelling-looking table,

using simple measures, but notice that we still don’t
really know anything about…
• the quality and relevance of the tests
• the quality and relevance of the bug reports
• the skill of the testers in finding and reporting bugs
• the complexity of the respective modules
• luck

…but if we ask better questions, instead of
letting data make our decisions,

we’re more likely to learn important things.

• Developer tests at the unit level
• use TDD, test-first, automated unit tests, reviews

and inspections, step through code in the
debugger—whatever increases your own
confidence that the code does what you think it
does

We Testers Humbly Request…
(from the developers)

We Testers Humbly Request…
(from the whole team)

• Focus on testability
• log files
• scriptable interfaces
• real-time monitoring capabilities
• installability and configurability
• test tools, and help building our own
• access to “live oracles” and other forms of information

End of Talk Six

